Основні триботехнічні методи зміцнення, при використанні порошкових матеріалів деталей АНТ

Триботехнічні властивості: зносостійкість, зношування, тертя, покриття, залишкові напруги детонаційно-газових покриттів
Аналіз сучасних поглядів і досліджень із підвищення зносостійкості твердих тіл Сучасні теорії й механізми зношування твердих тіл Вплив структури поверхневих шарів на їхню зносостійкість у процес ренію вузлів АНТ Основні триботехнічні методи зміцнення, при використанні порошкових матеріалів деталей АНТ Обґрунтування доцільності відновлення деталей Постановка завдань дослідження Фізико-хімічні методи аналізу поверхонь тертя Планування експерименту й обробка результатів експериментальних досліджень Регуляція параметрів тертя й зношування композиційних покриттів системи Fe-Mn за рахунок додавання до складу масел з ламелярной структурою Визначення оптимального змісту дисульфіду молібдену в покритті Оцінка рівня залишкових напруг у поверхневих шарах досліджуваних покрити Розподіл технологічних залишкових напруг по товщині детонаційних покрити Небезпечні й шкідливі виробничі фактори під час напилення композиційних матеріалів Загальні загрози екологічної безпеки Загроза екології при напилені композиційних матеріалів Технології напилення керамічних матеріалів в підвищенні надійності АНТ
195128
знаков
11
таблиц
21
изображение

1.2 Основні триботехнічні методи зміцнення, при використанні порошкових матеріалів деталей АНТ

Спектр технологічних способів створення, поновлення й ремонту зносостійких антифрикційних покрити дуже широкий . Звичайно, на практиці в ремонтних підприємствах прагнуть сполучити вищевказані способи з операціями по формуванню необхідних фізико-механічних властивостей поверхневого шару, при цьому зарекомендував себе структурно-енергетичний підхід [12]. У роботах [13, 14] запропонований технологічний процес нанесення зносостійких і антифрикційних покрити методом плазмового й індукційного наплавлення. Однак, їм характерні істотні недоліки: деформація виробів, у наслідок високої погонної енергії наплавлення, нерівномірність властивостей матеріалів, які наплавляються, обмежений вибір їх з'єднань, значна пористість і ін. [13]. Більш прогресивному методу електро-контактного напрямку не властива рівномірності властивостей покриття, що створюються, не статистична репрезентабельність значень міцності зчеплення, зносостійкості, а також можливість створювати шари тільки на поверхні тіл обертання. [13]. У роботі [15] розглядається електроіскрове нанесення по епюру нерівномірного зношування дискретних покриттів. У роботах [13, 16, 17] відзначається застосування у вітчизняній і закордонній практиці поновлення зношених деталей різних модифікацій розпорошеністю металопокриттів. Але, при підвищених навантаженнях на зрушення й стиск, а також при відсутності змащення, металізовані покриття різко втрачають захисні властивості [17], а це, відповідно, обмежує їхнє застосування. Для електролітичних покрити [18-21] характерно негативний вплив товщини на втомну міцність. Звідси зниження витривалості основного металу, не герметичність покрити, не великий вихід по струму й мала продуктивність, слабка здатність електроліту розкривати й негативний екологічний вплив. Також застосування відзначених покриттів обмежується зношуванням, величина якого по технічних умовах не повинна перевищувати припустимих значень (до 200 мкм), а працездатність їх значною мірою залежить від умов розробки, змащення й зовнішніх впливів. Методи газотермічного напилення мають високу продуктивність і широке застосування як за асортиментами робітників матеріалів, так і по номенклатурі ремонтованих виробів. Технологія дозволяє одержувати покриття товщиною 2,0-4,5 мм, як на локально зношених ділянках, так і по всій робочій поверхні [12]. Визначальними технологічними параметрами газотермічних методів напилення є температура й швидкість газового потоку, що забезпечують відповідні енергетичні характеристики робочим часткам порошкового матеріалу, а також хімічний склад газового потоку, якої обумовлює характер його взаємодії з робочим матеріалом. До основних методам газотермічного напилювання, які придбали поширення в практиці ремонтних підприємств, ставляться: газополум’яний, плазмовий і детонаційно-газовый. Джерелом нагрівання часток матеріалу газотермічних покриттів є полум'я газових сумішей, а джерелом прискорення - струмінь стисненого повітря [23]. При формуванні теплового потоку використовується енергія, яка виділяється при згорянні суміші кисню й газу (пропан, бутан або ацетилен). Відзначимо, що кисневе полум'я має найбільшу теплоту згоряння й тому частіше використовується при напилюванні. Зазначені методи відрізняються між собою фізико-хімічними процесами робочих циклів, технологічним устаткуванням, закономірностями взаємодії матеріалів покриттів з газовими середовищами, особливостями формування покриттів і їх властивостями й, як наслідок, можливостями практичного застосування газополум’яного покриття. При застосуванні газополум’яного покриття, початкові матеріали можуть використовуватися у вигляді проведення, прутиків, порошків, або гнучких шнурів, оболонка яких складається з органічного полімеру. Швидкість польоту часток при газополум’яних покриттів залежить від тиску газів і розміру часток [14]. Наявність кисню в потоці газу значно обмежує номенклатуру матеріалів для створення покриттів, тобто матеріал, який використовується для газополум’яного покриття, не повинен розщеплювати й горіти в полум'ї. газополум’яне покриття в основному використовуються для захисту чорних металів від корозії, поновлення розмірів зношених легко навантажених деталей, підвищення антифрикційних властивостей пари тертя. До основних недолікам газополум’яних покриттів можна віднести недостатній рівень міцності зчеплення покриттів з основою, наявність пористості, яка перешкоджає застосуванню покрити в корозійних середовищах без додаткової обробки й невисокий коефіцієнт використання енергії газополум’яного струменя нагрівання порошкового матеріалу [17]. Плазмові покриття. Плазма є високотемпературним джерелом нагрівання й характеризується тому, що її теплоенергетичні й газодинамічні параметри (температура, швидкість, склад, тиск і ін.) можна регулювати в широких границях. Це дає можливість напилювати покриття з тугоплавких матеріалів у тому числі високотемпературні окисли й безкисневі тугоплавкі з'єднання. Але матеріал у плазмовому струмені повинний не сублімуватися й інтенсивно не розщеплюватися . Плазмові покриття характеризуються суцільною арковою структурою, яка виникає в результаті сильної деформації й дуже швидкої кристалізації часток покриття, тому місткість кисню й азоту в покритті може досягати десятих часток відсотка й більше . Слід зазначити, що при плазмовому напиленні інертні плазмостворюючі гази не створюють цілком захисну атмосферу на всій траєкторії польоту часток матеріалу покриття, тому властивості покрити відрізняються від властивостей початкового матеріалу. У цілому, плазмові покриття пористі й мають незначну міцність зчеплення . Зносостійкість покрити значною мірою визначається якістю підготовки поверхні до нанесення покриття з метою забезпечення максимальної її шорсткості й хімічної активності. Основу операції підготовки становить газоерозійнаі обробка з використанням кварцового піску або корунду зі сталевої крихти .Детонаційно- газові покриття. При детонаційно-газовому методі частки матеріалу покриття при напилюванні мають найбільшу швидкість. У такий спосіб обмеження по температурі напилювання компенсуються вищою кінетичною енергією часток. Виникає активна взаємодія спрямованих часток з поверхнею деталі й забезпечується висока міцність зчеплення (майже як у монолітному матеріалі [6]) і щільність покриття. Для детонаційно-газового напилювання придатна значна номенклатура порошкових неорганічних (а також тугоплавких) матеріалів і будь-які поверхні. Детонаційно-газові покриття добре зарекомендували себе в умовах підвищених навантажень і температур, інтенсивного зносу й агресивних середовищ. На основі аналізу вищевказаних робіт була складена таблиця 1.

Таблиця 1. Основні характеристики газотермічних методів нанесення зносостійких порошкових покриттів

Характеристика Газотермічені методи
Газополум’є вий Плазмовий Детонаційний
Товщина покриття, мм 0,5÷5 Ограниченно тільки рівнем напруг, які накопичуються в мА матеріалі
Температура нагрівання основи, К 323÷523 473÷523
Швидкість часток покриття, м/с 50÷250 600÷1000 (1100÷1300 плазмовий імпульсний)
Пористість, % 20 до 25 0,5÷1
Производственная мощность установки, кг/ч 4÷8 и більше 25
Прочность зчеплення з основою, МПа 10÷35 15÷48 90÷180

Шорсткість напиленої поврхні (Rz), мкм

30÷55 20÷45 10÷35

Основними перевагами детонаційно-газових покриттів є:

- міцність зчеплення з деталлю (основою), яка перевищує міцність зчеплення покрити подібних методів в 5-9 раз і, у свою чергу, забезпечує їхню високу працездатність в умовах граничного тертя й при відсутності змащення;

- мала пористість, що дозволяє застосовувати покриття для деталей, які працюють в агресивних середовищах;

- менша шорсткість формуючої поверхні, яка залежить від дисперсності порошку, рельєфу поверхні й режимів, дозволяє застосовувати деталі з напилюванням без додаткової механічної обробки;

- широкий діапазон товщини напиленого шару дозволяє відновляти нерівномірно зношені поверхні зі значними локальними руйнуваннями;

- обмежена температура нагрівання деталі, практично не впливає на структуру матеріалу деталі й дозволяє наносити покриття з різних порошків не тільки на метали й сплави, але й на вироби із пластмас, гуми, скла й інше.;

- застосування спеціальних видів підготовки поверхні деталі до напилюванню (добре струмінна й піскоструминна обробка, вирівнювання) дозволяє не тільки зберегти початкову втомну міцність, але й підвищити її;

- простота налагодження встаткування й підготовки обслуговуючого персоналу. Однак слід зазначити, що на даному етапі для детонаційних методів нанесення зносостійких інше. характерне використання порошкових матеріалів утримуючих дорогі й дефіцитні компоненти (W, Nі, Co і ін.).

 


Информация о работе «Триботехнічні властивості: зносостійкість, зношування, тертя, покриття, залишкові напруги детонаційно-газових покриттів»
Раздел: Промышленность, производство
Количество знаков с пробелами: 195128
Количество таблиц: 11
Количество изображений: 21

0 комментариев


Наверх