1.2.33 Т е о р е м а (Ф. Холл [28,30], Чунихин [29]).

1) Конечная группа  обладающая для любого  холловой -подгруппой, разрешима.

2) Конечная группа  представимая в виде произведения некоторых своих попарно перестановочных -подгрупп по разным простым  (или, что равносильно, обладающая полной силовской базой, представимая в виде произведения некоторых своих попарно перестановочных примарных подгрупп), разрешима.

1.2.34 Т е о р е м а (Ф. Холл [28,30]). Конечная группа разрешима тогда и только тогда, когда она разложима в произведение попарно перестановочных -подгрупп по разным простым

1.2.35 Т е о р е м а (Кегель [31] – Виландт [4]). Конечная группа, представимая в виде произведения некоторых своих попарно перестановочных нильпотентных подгрупп, разрешима.

1.2.36 Т е о р е м а. Пусть  – некоторое множество простых чисел;  – группа, факторизуемая подгруппами  и  где  – -группа, а  такова, что  Тогда  является силовской -подгруппой группы

1.2.37 Л е м м а. Пусть  – группа, факторизуемая двумя подгруппами  и  где  – -, а  – -подгруппа группа  Если в  все силовские -подгруппы или все силовские -подгруппы сопряжены, то

1.2.38 Л е м м а (Гардинер, Хартли, Томкинсон [33]). Пусть  – группа,  – ее инвариантная подгруппа,  – -подгруппа группы  для некоторого непустого множества  простых чисел. Если  является силовской -подгруппой группы  и  – силовской -подгруппой группы  то  является силовской -подгруппой группы


Информация о работе «Произведения конечных групп, близких к нильпотентным»
Раздел: Математика
Количество знаков с пробелами: 48406
Количество таблиц: 0
Количество изображений: 0

Похожие работы

Скачать
33601
0
0

... , , ; 4) ,  или ,  или  соответственно. В каждом параграфе подробно изучена соответствующая тема с теоремами леммами и доказательствами последних. 1. Конечные группы со сверхразрешимыми подгруппами четного индекса Строение конечных минимальных несверхразрешимых групп хорошо известно. В частности, они дисперсивны и их порядки делятся не более чем на три различных простых числа. Если условие ...

Скачать
57480
0
0

... 13-A]. 2. Получено описание наследственных насыщенных сверхрадикальных формаций, критические группы которых разрешимы [20-A]. 3. В классе конечных разрешимых групп получено описание наследственных насыщенных формаций , замкнутых относительно произведения обобщенно субнормальных -подгрупп взаимно простых индексов [18-A]. 4. Доказано, что любая разрешимая 2-кратно насыщенная формация , замкнутая ...

Скачать
38215
0
0

... 1.6 . В главе 2 получено описание наследственных насыщенных -формаций Шеметкова, теорема 2.2 . В главе 3 в классе конечных разрешимых групп получено описание наследственных формаций Фиттинга , замкнутых относительно произведения -подгрупп, индексы которых не делятся на некоторое фиксированное простое число, теорема 3.3 . Список использованных источников 1. Васильев, А.Ф. О максимальной ...

Скачать
31839
0
0

... -подгруппами, индексы которых взаимно просты, наследственно насыщенным формациям В данном разделе в классе конечных разрешимых групп получена классификация наследственных насыщенных формаций , замкнутых относительно произведения обобщенно субнормальных -подгрупп, индексы которых взаимно просты. 2.1 Теорема [18-A]. Пусть  --- наследственная насыщенная формация, --- ее максимальный внутренний ...

0 комментариев


Наверх