2.3 Геометрія Лобачевского в системі Вейля

Про псевдоевклідові планіметрії

а) В евклідовій площині, як відомо, формула квадрата відстані між двома крапками М(х1, х2) і N(в1, в2) у декартовой, прямокутній системі координат представляється у вигляді

d(M,N)2=(y1 - x1)2+(y2 - x2)2. (3.1)

Кут  між векторами ОМ і ОN обчислюється зі співвідношення

. (3.2)

Перша формула по суті виражає теорему Піфагора для прямокутного трикутника з катетами, рівними абсолютним величинам  і гіпотенузою МN. Друга ж формула представляє собою формулу косинуса різниці кутів, утворених відповідно ОМ і ON c координатним вектором .

Тепер змінимо формули (3.1) і (3.2) і будемо визначати відстань між зазначеними двома крапками й величини даних кутів по формулах відповідно


d(M,N)=(y1 - x1)2 - (y2 - x2)2 (3.3)

 (3.4)

Колишні пари крапок тепер будуть мати інші відстані» а колишні кути - інші величини. Це по суті нова своєрідна двомірна геометрія.

Щоб підкреслити наявність іншої метрики й не плутати нові відстані й величини кутів зі старими, умовимося називати координатну площину (x1, x2) формулами (3.3), (3.4) псевдоевклідовою площиною.

б) Для більшої аналогії з евклідовою геометрією доцільно ввести новий скалярний добуток векторів як добуток їхніх довжин на косинус кута між ними. Ясно, що цей добуток векторів відрізняється від звичайного скалярного добутку тих же векторів, тому що довжини векторів (відстань між початкової його й кінцевої крапками) і косинус кута розуміється в змісті псевдоевклідової геометрії.

Не будемо далі перераховувати наслідків з формул (3.3), (3.4) і дамо аксіоматичне визначення псевдоевклідової геометрії. Робиться це в такий спосіб.

Замість аксіоми IV, 3 вейлевської аксіоматики, у якій говориться про те, що скалярний квадрат вектора ненегативний, уводиться інша аксіома IV, 3' про існування ненульових векторів першого, другого, і третього типів, скалярні квадрати яких відповідно позитивні, негативні й дорівнюють нулю.

Всі інші аксіоми Вейля зберігаються без зміни в псевдоевклідової геометрії. Звичайно, припускаємо, що аксіоми розмірності III відповідним чином погоджені. Якщо мова йде про площину, то в аксіомі III, 1 затверджується існування двох лінійно незалежних векторів, а в аксіомі III, 2 затверджується, що всякі три вектори лінійно залежні.

Сукупність крапок називається псевдоевклідовою площиною, якщо ці крапки і їхні впорядковані пари (вільні вектори) задовольняють аксіомам груп /--///, IV, 1, 2, 3', V. Очевидно, вектори псевдоевклідової площини задовольняють аксіомам /--///- IV - 1, 2, 3' і утворять двомірний псевдоевклідовий векторний простір.

У псевдоевклідової геометрії афінна частина повністю збігається з афінної частиною евклідової геометрії. Але в метричних питаннях геометрії ці значно відрізняються друг від друга, метрика простору по суті визначається аксіомами скалярного добутку векторів і серед них важливу роль грає саме аксіома IV, 3'.

в) Скалярний добуток двох векторів ,  у змісті псевдоевклідової геометрії будемо позначати символом П. Вектори ,  називаються перпендикулярними, якщо їхній скалярний добуток дорівнює нулю.

Як і раніше число П називається скалярним квадратом вектора ; корінь квадратний з П якого називається довжиною вектора й позначається через | |.Таким чином,

,

Ясно, що довжина вектора буде позитивної, чисто мнимий або нульовий, якщо відповідно скалярний квадрат П >0, П <0 або П =0. Вектори позитивної й чисто мнимої довжини називають також відповідно просторовими й тимчасовими.

Ненульові вектори, довжини яких дорівнюють нулю, називаються ізотропними.

Уведемо поняття прямокутної декартовой системи координат. Прямокутної декартовой системою координат або просто прямокутною системою координат псевдоевклідової площини називається така афінна система координат, вектори  якої одиничні або взаємно перпендикулярні.

Отже, один з координатних векторів псевдоевклідової площини, наприклад,  буде одиничним, а іншої – мнимо одиничним Таким чином, скалярний добуток координатних векторів прямокутної системи координат визначаються рівностями

. (3.5)

Очевидно, скалярний добуток двох векторів

і квадрат довжини вектора  в прямокутній системі координат обчислюються по формулах виду

 (3.6)

 (3.7)

За відстань між двома крапками M(х1, х2) і N(y1, y2) визначенню приймається довжина вектора :

d(M,N)2=(y1 - x1) - (y2 - x2)2.

 

Величиною кута між векторами  й  називається число, певне по формулі

 (3.8)


У правій частині (3.8) чисельник позитивний, а знаменник при неізотропних векторах ,  може бути позитивним і негативним.

Якщо вектори ,  однієї природи, тобто обидва множники в знаменнику одночасно просторові або тимчасові, те, якщо ж один з векторів просторовий, а інший тимчасовий, то .

Неважко далі довести, що чисельник в (3.8) не менше знаменника. Дійсно, якщо координати векторів  і  будуть відповідно (х1, х2) і (в1, в2) у деякій прямокутній системі координат, те

.

Отже, якщо вектори ,  одночасно будуть просторовими або тимчасовими, те

. (3.9)

Думаючи в цьому випадку , одержимо

. (3.10)

У псевдоевклідової площини існує три типи прямих залежно від природи її напрямного вектора, якщо напрямний вектор буде просторова, тимчасова або ізотропним, те пряма називається відповідно до просторової, тимчасовий або ізотропної.

г) Перейдемо тепер до визначення поняття окружності.

Окружністю в псевдоевклідової площини називається множина її крапок, що відстоять від даної крапки, називаної центром на те саме відстань r; величина r називається радіусом окружності. Вибираючи прямокутну систему координат з початком у центрі окружності, переконаємося, що координати поточної крапки (х1, х2) даної окружності задовольняють рівнянню

.

У цій геометрії існує три типи окружностей - окружності речовинного, чисто мнимого й нульового радіусів. На мал. 13 окружності нульового радіуса зображуються з погляду евклідової геометрії бісектрисами координатних кутів, окружності речовинного радіуса - гіперболами, що перетинають вісь Ох1 і окружність чисто мнимого радіуса - гіперболами, що перетинають вісь Ох2.

д) На закінчення розглянемо коротенько руху в псевдоевклідової площини. Рух визначається як перетворення, що відповідають крапки якого мають ті самі координати щодо вихідної й довільно заданої прямокутних систем координат. Як і в евклідовій геометрії доводиться, що рух є ізометрією й, обернено, усяка ізометрія є рухом. Ізометрія визначається як перетворення, що зберігає відстань між двома довільними крапками. Як і в геометрії евклідової площини, руху можна розділити

на власні рухи - руху з визначником  = 1 і невласні - руху з визначником  = - 1. Але тепер кожну із цих сукупностей у свою чергу можна розділити на дві сукупності. Щоб переконатися в цьому, відзначимо попередньо наступні два зауваження.

По-перше, ясно, що просторові, тимчасові й ізотропні вектори при рухах залишаються відповідно просторовими, тимчасовими й ізотропними.

По-друге, при безперервних обертаннях навколо даної крапки вектори ізотропного конуса відокремлюють у цій крапці тимчасові вектори від просторових.


Перейдемо тепер до подальшого поділу на частині рухів псевдоевклідової площини. Неважко бачити, що у формулах

 (3.11)

визначальне обертання, величина  не звертається в нуль. Справді, припустимо, що в (3.11) коефіцієнт  рівняється нулю. У такому випадку просторовий вектор {1, 0} при обертанні (3.11), перейшов би у вектор {0, }, що є тимчасовим, що неможливо. Таким чином, при змінах координатних векторів , викликуваних безперервними обертаннями, коефіцієнт  буде постійним.

Отже, всі рухи діляться на чотири типи залежно від значення визначника перетворення  = 1 або  = - 1 і знака  > 0 або  < 0.

Представниками цих чотирьох типів будуть, наприклад, руху з матрицями:

Псевдоевклідовий тривимірний простір

а) узагальнимо побудови псевдоевклідової площини на тривимірні простори. Аксіоми псевдоевклідового тривимірного простору збігаються з аксіомами Вейля псевдоевклідової площини, за винятком аксіом розмірності III. Тепер в аксіомі III-I мова йде про існування трьох лінійно незалежних векторів, а в аксіомі III, 2 - усякі чотири вектори лінійно залежні.

Скалярний добуток двох векторів ,  у псевдоевклідовом просторі будемо позначати, як і у випадку псевдоевклідової площини, символом . Вектори ,  - перпендикулярні, якщо їхній скалярний добуток дорівнює нулю.

Число  називається скалярним квадратом вектора. Довжиною вектора  називається корінь квадратний зі скалярного квадрата цього вектора й позначається через :

 

.

Підкореневе вираження може бути >0, <0, і  = 0. Довжини векторів відповідно до цим випадкам будуть речовинні, чисто мнимі й нульові. Вектори речовинної довжини називаються також просторовими, вектори чисто мнимої довжини - тимчасовими й вектори нульової довжини - ізотропними.

У псевдоевклідовом просторі вводиться прямокутна система координат. По визначенню так називається афінна система координат, вектори якої  одиничні й взаємно перпендикулярні. Будемо розглядати так званий простір Минковського, у якому із трьох координатних векторів прямокутної системи координат два одиничні, а третій — мнимо одиничний. Будемо вважати, що

 (3.12)

У цій системі координат скалярний добуток двох векторів і квадрат довжини вектора, мабуть, обчислюються по формулах виду


І квадрат довжини вектора, мабуть, обчислюються по формулах виду

, (3.13)

. (3.14)

За відстань між двома крапками М(x1, x2, x3) і N(y1, y2, y3) по визначенню приймається довжина вектора , тобто

. (3.15)

 

Величиною кута між векторами  й  називається число, певне по формулі

.

Якщо вектори ,  однієї природи, тобто обоє просторові або тимчасові, то . Більше того, , якщо для х, у виконується нерівність Коші й , якщо нерівність це не виконується. Думаючи в останньому випадку , одержимо .

б) У псевдоевклідовом просторі існує три типи прямих залежно від природи її напрямного вектора. Тут існують також три види площин залежно від природи її нормального вектора.

в) Докладніше розглянемо питання про сфери. Сферою псевдоевклідова простору П3 називається множина крапок цього простору, що відстоять від даної крапки А, називаної центром сфери, на те саме відстань r. Величина r називається радіусом сфери.

Вибираючи прямокутну систему координат з початком у центрі сфери, переконаємося в тім, що координати х1, х2, х3 поточні крапки сфери радіуса r задовольняють рівнянню

. (3.17')

Ясно, що перші два координатних вектори прямокутної системи тут передбачаються одиничними, а третій вектор - мнимо одиничним.

У псевдоевклідовом просторі існують три типи сфери речовинного, чисто мнимого й нульового радіуса.

Рівняння сфери речовинного радіуса r збігається (3.17'), у якому величина r речовинна. Якщо сфера чисто мнимого радіуса r = ki, де k речовинне, то рівняння (3.17') приводиться до виду

 (3.17)

Якщо ж сфера буде нульового радіуса, то з (3.15) треба, що

. (3.18)

Рівняння (3.18) в евклідовому просторі є рівнянням конуса, а попередні два - рівняння гіперболоїдів.

Ясно, що конус (3,18) складається з асимптот сфер (3.17, 17'), що мають центр на Начало координат. Очевидно, асимптотичеський конус сфери збігається з ізотропним конусом її центра. З рівняння (3.15) треба також, що на сферах псевдоевклідова простори є прямолінійні утворюючі - прямі цілком лежачі на сфері.

Очевидно, лінією перетинання сфери із площиною є окружність. Якщо січна площина проходить через Начало Координат, то радіус окружності приймає значення, рівне радіусу сфери. Одержувані в такий спосіб окружності сфери називаються більшими окружностями.

За сферичну відстань  між двома крапками М ( ), N ( ) сфери приймаємо відстань по великій окружності, що з'єднує дані крапки. Очевидно, ця відстань рівняється добутку радіуса сфери на значення кута, утвореного радіусами векторами , . Отже, сферична відстань  визначається по формулі

. (3.19)

Якщо сфера чисто мнимого радіуса r = ki, то формула (3.19) приводиться до виду

.

Геометрія Лобачевского

Переконаємося тепер, що геометрія сфери чисто мнимого радіуса в псевдоевклідовом просторі є Двомірною геометрією Лобачевского. Обмежуючись лише однієї, наприклад, верхньої порожньої сфери, покажемо, що в множині її крапок і більших окружностей здійснюється планіметрія Лобачевского. Для простоти ці крапки можна спроектувати із центра сфери на дотичну до неї площина в крапці N. Криву перетинання дотичної площини з ізотропним конусом будемо називати абсолютом.

При проектуванні крапки півсфери перейдуть у внутрішні крапки кола, обмеженого абсолютом, а більші окружності - у хорди абсолюту. Очевидно, останні є лініями перетинання площин більших окружностей із внутрішністю абсолюту. Інцідентність крапок і прямих розуміється у звичайному змісті. Ясно, що в системі крапок внутрішності абсолюту і його хорд аксіоми 1,1 - 3 виконуються. Аналогічно аксіоми II порядку й IV безперервності переходять у щирі пропозиції геометрії дотичної площини. Що стосується аксіом III групи - аксіом конгруентності, те вони також переходять у щирі пропозиції тривимірної псевдоевклідової геометрії. При цьому вважаємо конгруентними ті відрізки (кути), яким на сфері чисто мнимого радіуса відповідають сфери дуги більших окружностей, що сполучаються при деяких, обертаннях (кути між більшими окружностями).

З'ясуємо тепер, яка виконується аксіома паралельності: V або V'.

Припустимо, що нам дана на верхній півсфері більша окружність і не лежача на ній крапка. У зв'язуванні прямих і площин, центр якого збігається із центром сфери, цієї великої окружності й крапці відповідають відповідно площина й пряма a зв'язування.

Очевидно, що через пряму а можна провести незліченну множину площин зв'язування, що розсікають півсферу по більших окружностях, що не перетинаються з даною великою окружністю. У такий спосіб у розглянутій моделі виконується аксіома паралельності Лобачевского. Інакше кажучи, площинна геометрія Лобачевского збігається з геометрією сфери чисто мнимого радіуса.

Ці міркування дозволяють прийняти наступне загальне визначення n-мірних неевклідових геометрій.

Неевклідовими геометріями n-вимірів називаються геометрії, які породжуються на n-мірних сферах, Sn речовинного або чисто мнимого радіуса в (n+1)-мірному евклідовому відповідно псевдоевклідовом просторі. Передбачається також» що діаметрально протилежні крапки цих сфер ототожнені, тобто такі пари крапок уважаються за одну крапку.

Із цього визначення треба, що при зростанні n число типів неевклідових просторів також росте. Неевклідові геометрії є геометриями найпростіших римановых просторів певної й невизначеної метрики, що становлять так званий клас просторів постійної ненульової кривизни. Кожне з таких n-мірних просторів допускає сукупність рухів, що залежить від n(n+1)/2 параметрів.

Очевидно, при n=2 одержимо еліптичну площину й площину Лобачевского. Геометрія, цих площин буде відповідно геометрією сфери Евклідова простору й геометрією сфери чисто мнимого радіуса в псевдоевклідовом просторі.

Наше найближче завдання — вивести основні формули сферичного трикутника (так називаються трикутник на сфері, утворений трьома дугами більших окружностей). Ці формули виражають основні математичні співвідношень у трикутниках геометрії Лобачевского.

а) СНачало доведемо так звану теорему косинусів. Припустимо, що нам даний сферичний трикутник з вершинами А( ), В ( ), З ( ), кутами A, В, С и протилежними сторонами відповідно а, b, с.

Очевидно, ці сторони пов'язані з радіус-векторами вершин сферичного трикутника наступними рівностями

 (3.21)

Припустимо далі, що дотична площина до сфери в крапці З перетинає радіуси ОА й ОВ у крапках  і . Ці числові множники , радіусів векторів крапок A1 і B1 визначаються зовсім просто, якщо врахувати ортогональність векторів ,  і ,  Дійсно,

.

Звідси на підставі (3.21) треба, що


. (3.22)

Повторюючи наведені міркування для іншої пари  й  ортогональних векторів, одержимо

. (3.23)

Знайдемо тепер скалярний добуток векторів  і . З одного боку, маємо

,

Де

Отже, на підставі (3.22, 3.23) маємо

Тому

.


З іншого боку,

.

Застосовуючи потім (3.21), (3.22), (3.23), одержимо

 (3.25)

Порівнюючи (3.24) і (3.25), містимо

Або

. (3.26)

Формула (3.26) не залежить від нашого припущення про крапки перетинання А1 і В1. Ця формула виражає теорему косинусів сферичного трикутника сфери чисто мнимого радіуса: косинус гіперболічної сторони сферичного трикутника дорівнює добутку косинусів гіперболічних двох інших сторін без добутку синусів гіперболічних цих же сторін на косинус кута між ними.

б) Переходимо тепер до висновку теореми синусів. Обчислимо для цього квадрат відносини . На підставі (3.26), маємо


. (*)

Бачимо, що чисельник правої частини є симетричним вираженням щодо змінних а, b, с. Неважко переконатися, що такою ж симетричністю щодо цих змінних володіє й знаменник. Справді

 (3.27)

Таким чином, квадрат шуканого відношення симетричний щодо сторін а, b, с. Це означає, що заміняючи позначення сторін а, b, з і кутів А, В, С у круговому порядку в (*) одержимо відносини , , рівні . Витягаючи із цих відносин квадратних корінь, одержимо формули

, (3.28)

теорему, що виражає, синусів сферичного трикутника в геометрії сфери чисто мнимого радіуса: синуси гіперболічних сторін сферичного трикутника ставляться як синуси протилежних кутів.


в) Помітимо, що формули (3.26) і (3.28) геометрії сфери чисто мнимого радіуса r = ki у псевдоевклідовому просторі можна одержати з відповідних формул сферичного трикутника в евклідовому просторі, заміняючи  на ,  на ,  на .

Застосовуючи це правило, одержимо другу теорему косинусів для сферичного трикутника у випадку сфери мнимого радіуса:

 (3.29)

Інакше, косинус кута сферичного трикутника дорівнює добутку синусів двох інших кутів на косинус гіперболічної сторони між цими кутами без добутку косинусів двох інших кутів.

Звідси треба, що якщо кути одного сферичного трикутника дорівнюють відповідним кутам іншого сферичного трикутника, те такі трикутники рівні.

Формули прямокутного трикутника

Припустимо, кут Із трикутника AВС є прямим. Застосовуючи теорему косинусів (3.26), одержимо

. (3.30)

Ця рівність виражає теорему Піфагора в геометрії Лобачевского: косинус гіперболічної гіпотенузи прямокутного трикутника рівняється добутку косинусів гіперболічних катетів. Застосовуючи формулу (3.28) будемо мати:


, (3.31)

. (3.32)

Отримані формули можна виписати за мнемонічним правилом, аналогічному правилу Непера в сферичній геометрії.

У цих формулах зв'язуються п'ять елементів прямокутного трикутника, які можна розглядати в циклічному порядку . Для кожного елемента попередній і наступний елементи називаються прилеглими, а інші два елементи - протилежними елементами. Мнемонічне правило формулюється в такий спосіб.

Косинус елемента прямокутного трикутника в геометрії Лобачевского рівняється добутку синусів протилежних елементів або добутку котангенсів прилеглих елементів.

Якщо під знаком функції входить кут, то функція розуміється в тригонометричному змісті. Якщо ж входить довжина, то вона ділиться на радіус кривизни і їхня функція розуміється в гіперболічному змісті. Нарешті, у випадку, коли під знаком функції коштує катет, функція міняється на суміжну: синус - на косинус, тангенс - на котангенс і навпаки.

Користуючись наведеним правилом, одержимо для кожного елемента відповідні вираження через прилеглі й протилежні елементи прямокутного трикутника:


 (3.33)

 

Основна формула Лобачевского

Нехай дана на площині Лобачевского пряма a і крапка A, не інцідентна їй. Опустимо із крапки А перпендикуляр АВ на пряму а (мал. 19). Проведемо також через крапку А пряму АТ, паралельну прямій а в якому-небудь напрямку. Кут , як указували вище, називається кутом паралельності, а відрізку АВ. Для одержання основний формул Лобачевского, що зв'язує кут паралельності ВАО = П(p) з відрізком p=АВ, візьмемо на промені В яку-небудь крапку С. Для прямокутного трикутника AВС, маємо

Будемо видаляти тепер крапку З по промені нескінченно, прагне при цьому до 1 і в межі, одержимо

Звідси треба, що


Вставляючи в останню рівність

остаточно одержимо

Ця формула, що зв'язує кут паралельності П(р) з відповідним відрізком р, називається основною формулою Лобачевского. З її треба, що кут паралельності є монотонно убутною функцією. Якщо відрізок паралельності р прагне до нуля, то кут паралельності прагне до прямого кута, якщо ж р прагне до нескінченності, то кут П(р) прагнути до нуля.

Геометрія сфери простору Лобачевского

Візьмемо в тривимірному просторі Лобачевского сферу радіуса R із центром у деякій крапці О. На цій сфері індуцирується деяка сферична геометрія. сукупність, Що Виходить, пропозицій називається геометрією сфери в просторі Лобачевского. Розглянемо в цій геометрії прямокутний трикутник AВС, утворений з дуг АВ = з, АС = b, ВР = a більших кіл. Дуги більших кіл тут, як і в сферичній геометрії звичайного простору є найкоротшими для досить близьких крапок на сфері. Кути між більшими колами розуміються як лінійні кути двогранних кутів, утворених площинами більших кіл. Припустимо, що кут З даного трикутника прямої. Опустимо далі із крапки В перпендикуляри ВА1 і ВР1 на радіуси ОА й ОС відповідно. Застосовуючи відомі формули до прямокутного трикутника ОВС1 (мал. 20), одержимо

Аналогічно із трикутників ОВА1 і А1ВР1 треба, що

Крім із цих трьох співвідношень ВР1 і ВA1, одержимо формулу

співпадаючу з відповідною формулою для прямокутного сферичного трикутника в евклідовому просторі. Виведемо тепер теорему Піфагора для прямокутного трикутника ABС у геометрії сфери в просторі Лобачевского. Із трикутника ОВС1 маємо

Аналогічно із трикутників ОВА1 і OA1C1 відповідно треба, що


Крім із отриманих трьох рівностей відрізки ОС1 і OA1 виводимо

Ця формула збігається з відповідною формулою для прямокутного трикутника звичайної сферичної геометрії. Зазначеним способом можна переконатися, що в цілому геометрія сфери простору Лобачевского збігається з геометрією сфери Евклідова простору.

Про геометрію Лобачевского в малому

Припустимо тепер, що в трикутнику лінійні розміри a, b, c малі в порівнянні з радіусом кривизни k простору. Це припущення свідомо виконується для трикутників з малими лінійними розмірами або в просторі досить малої кривизни 1/k2. Розкладаючи в статечні ряди гіперболічні функції у формулі (3.26), що виражає теорему косинусів у геометрії Лобачевского, одержимо

З огляду на тут члени до другого порядку малості включно, будемо мати

a2 = b2 + c2 – 2 bc cosA.

 


Ця залежність між елементами трикутника виражає теорему косинусів в евклідовій геометрії. У випадку прямокутного трикутника cosA=0; отже,

a2 = b2 + c2

т. е. справедлива теорема Пифагора. Далі при наших припущеннях синуси гіперболічні у формулі (3.28) у першому наближенні пропорційні аргументам, тому

т. е. сторони трикутника пропорційні синусам протилежних кутів. Останні три рівності дозволяють затверджувати, що формули геометрії Лобачевского для фігур з малими лінійними розмірами збігаються з відповідними формулами евклідової геометрії.

 


Информация о работе «Евклідова і неевклідова геометрії»
Раздел: Математика
Количество знаков с пробелами: 105144
Количество таблиц: 2
Количество изображений: 4

Похожие работы

Скачать
140123
0
3

... общин, де кожний буде зобов'язаний трудитися. М.А. Бакунін дотримувався ідей анархізму, бачивши у владі причину експлуатації. Один з феноменів російської науки - плідна розробка ідей економіко-математичного моделювання, заснована на базі як „чистих” математиків, що направили свої зусилля в економіку, так і розробок професійних економістів. Перші російські економісти-математики (Ю.Г. Жуковській, ...

Скачать
16883
0
1

... з арифметики: відшукати суму деякої кількості натуральних послідовних чисел. Учитель вважав, що учні досить довго шукатимуть відповідь. Але через кілька хвилин Карл розв'язав задачу. Коли вчитель проглянув розв'язання, то побачив, що малий Гаусс винайшов спосіб скороченого знаходження суми членів арифметичної прогресії. Щасливий випадок звів Гаусса з першим у навчанні учнем цієї самої школи – ...

Скачать
75610
0
0

... дощ?—отримаємо таку загальну відповідь:—і корисний, і шкідливий; або: плоска чи сферична поверхня Землі? Відповідь — і плоска, і сферична. Звернемося для прикладу до оцінки відомого вчинку гетьмана України І. Мазепи російським імператором Петром І у листі до полтавського полковника після одержання звістки про виступ Мазепи проти Москви: “Изменник, богоотступник, вор. . . для собственной своей ...

Скачать
43535
0
0

... більш евристичним шляхом ("зважуючи" нескінченно малі), але потім він публікував їх, дотримуючи самі тверді вимоги строгості. Достаток обчислень в Архімеда відрізняє його від більшості творчих математиків Греції. Це додає його працям, при всіх їхній типово грецьких особливостях, східний відтінок. Такий відбиток помітний у його "Задачі про бики" - дуже складній задачі невизначеного аналізу, яку ...

0 комментариев


Наверх