1.1.4 Коррозионное поведение медно-никелевых сплавов

Коррозионное поведение медно-никелевых сплавов в различных средах и при различных условиях широко изучается [4 – 8].

Хотя сплав МНЖМц30–1–1 проявляет повышенную коррозионную стойкость в морской воде, в некоторых случаях он подвержен локальной (питтинговой) коррозии, особенно если вода отличается от морской по содержанию хлорид- и сульфид-ионов (гавани, устья рек).

В работе [4] исследовалось коррозионное поведение МНЖМц30–1–1 в кислородсодержащих чистых растворах NaCl (0,1 – 0,5 н.) и с добавками Na2S методом поглощаемого коррозией кислорода. Скорость коррозии рассчитывалась, как сумма измеренных парциальных анодных скоростей растворения металлов. Кроме того, в работе вычислялся дифференциальный коэффициент селективного растворения никеля ZNi:

 (1.1),

где jNi, jCu – парциальные анодные скорости растворения меди и никеля, nNi, nCu – валентности растворённых ионов, – исходные концентрации металлов в сплаве (ат.%). Величина ZNi>1 свидетельствует о преимущественном растворении никеля из сплава, а следовательно о поверхностном накоплении меди, величина ZNi<1 – о накоплении никеля.

Скорость коррозии МНЖМц30–1–1 в чистых растворах NaCl непрерывно снижается во времени, причём чем ниже концентрация соли, тем более значительным оказывается это уменьшение. В 0,5н. растворе в 2 первых часа коррозии на поверхности накапливается медь, а в дальнейшем – незначительно накапливается никель. В 0,25н. растворе за время всего опыта на поверхности накапливается медь.

То есть, снижение со временем скорости коррозии вызвано образованием на поверхности сплава защитной плёнки твёрдых продуктов коррозии. С уменьшением концентрации хлорида стойкость сплава повышается благодаря увеличению доли меди в этой плёнке.

В присутствии Na2S характер коррозионного поведения сплава изменяется. Вначале скорость коррозии с течением времени возрастает, а на поверхности в это время накапливается никель, но через 2 часа скорость коррозии начинает снижаться, а на поверхности накапливается медь.

В начальный период коррозии на поверхности образуется плёнка, обогащённая никелем и имеющая слабые защитные свойства. Со временем плёнка обогащается сульфидом меди, имеющим лучшие защитные свойства, что приводит к замедлению процесса коррозии. Увеличение концентрации сульфида натрия в растворе ускоряет этот процесс [4].

В работе [5] установлено, что легирование металла, приводящее к изменению состава и защитных свойств пассивационной плёнки повышает сопротивляемость сплава к питтингообразованию, только если в результате селективного растворения сплава на поверхности образуется соединение, стойкое к депассивации и понижающее электропроводность. Позитивную роль в повышении устойчивости металла при его легировании играет не увеличение толщины оксидной плёнки, а уменьшение её дефектности и электропроводности.

В некоторых условиях на поверхности сплавов выделяется водород, который, внедряясь в сплавы, заметно влияет на их электрохимические свойства. Причём, сплавы, содержащие более 60% меди при наводороживании образуют только α-фазу (твёрдый раствор внедрения), а сплавы с меньшим содержанием меди – две фазы: α- и β-фазу (гидрид сплава), причём чем меньше меди в сплаве, тем больше доля β-фазы.

При коррозии наводороженных сплавов происодит ионизация водорода из α-фаз или процесс распада β-фаз. При этом вместо селективного растворения никеля происходит селективное растворение меди [6 – 8].

1.2 Диаграмма состояния системы Cu – Ni

Диаграмма состояния медь – никель приведена на рис. 1.1.

Рис. 1.1. Диаграмма состояния Cu – Ni.

В интервале температур 1000–1500 °С исследование проведено с использованием катодной Сu чистотой 99,99% (по массе) и электролитического Ni чистотой 99,95% (по массе) методом микрорентгеноспектрального анализа образцов, закаленных из твердожидкого состояния. Результаты работы хорошо совпадают с данными,

полученными методами термического, металлографического и микрорентгеноспектрального анализов в области концентраций 0–100% (ат.) Ni. Система Сu–Ni характеризуется образованием в процессе кристаллизации непрерывного ряда твердых растворов (Сu, Ni) с гранецентрированной кубической (далее – ГЦК) структурой. По данным спектрального анализа установлено равновесие Ж↔Г с азеотропным минимумом при температуре 2500 °С и концентрации 50 – 60%; (ат.) Ni; указывается на наличие области расслоения на две фазы (газообразный и жидкий растворы разного состава) при концентрации 60 – 100% (ат.) Ni. В интервале концентраций 0 – 60% (ат.) Ni область расслоения настолько узка, что практически вырождается в прямую линию.

Граница расслаивания твердого раствора и критическая точка несмешиваемости, соответствующая концентрации никеля 69,7% (ат.) и температуре 342 °С приведена на основании расчета, проведенного по термодинамическим константам [9].

При температурах ниже 342˚С раствор расслаивается на 2 фазы: α-фазу (твёрдый раствор на основе меди с ГЦК решёткой) и γ-фазу (твёрдый раствор на основе никеля с ГЦК решёткой).


Информация о работе «Термодинамика химической и электрохимической устойчивости медно-никелевых сплавов»
Раздел: Химия
Количество знаков с пробелами: 56351
Количество таблиц: 25
Количество изображений: 13

Похожие работы

Скачать
40258
13
12

... устойчивость металлов и сплавов определяется их стойкостью к коррозии в водной среде. Лучшим способом представления термодинамической информации о химической и электрохимической устойчивости металлических систем в водных растворах являются диаграммы рН-потенциал. Впервые такие диаграммы в системе элемент-вода для чистых металлов при температуре 250С были построены Марселем Пурбе и использованы им ...

Скачать
30854
2
5

... при больших значениях  пленки получаются несплошные, легко отделяющиеся от поверхности металла (железная окалина) в результате возникающих внутренних напряжений. Поведение титана и его сплавов в различных агрессивных средах Реакции титана со многими элементами происходят только при высоких температурах. При обычных температурах химическая активность титана чрезвычайно мала и он практически ...

Скачать
116538
3
12

... обратимых потенциалов кислородного электрода при различных рН среды и Р P (атм) V ,B, при рН среды     рН=0 рН=7 рН=14 0,21 +1,218 +0,805 +0,381 1 +1,229 +0,815 +0,400 Коррозия металла с кислородной деполяризацией в большинстве практических случаев происходит в электролитах, соприкасающихся с атмосферой, парциальное давление кислорода в которой ...

Скачать
442397
6
13

... с кислородом, восстановлением - отнятие кислорода. С введением в химию электронных представлений понятие окислительно-восстановительных реакций было распространено на реакции, в которых кислород не участвует. В неорганической химии окислительно-восстановительные реакции (ОВР) формально могут рассматриваться как перемещение электронов от атома одного реагента (восстановителя) к атому другого ( ...

0 комментариев


Наверх