2.6 Индукция в воздушном зазоре
Коэффициент воздушного зазора [1]:
(23)
Аналогично определяется коэффициент =1,04
Общий коэффициент [1]:
см
Средняя длина лобовой части витка (с одной стороны) [1]:
(24)
Общая длина обмотки [1]:
(25)
Тогда относительное активное сопротивление [1]:
(26)
Коэффициенты магнитной проводимости [1]:
Суммарный коэффициент проводимости рассеяния [1]:
(27)
Относительно индуктивное сопротивление рассеяния обмотки статора [1]:
(28)
Соответствующие коэффициенты магнитной проводимости рассеяния у ротора[1]:
Суммарный коэффициент проводимости рассеяния [1]:
(29)
Относительно индуктивное сопротивление рассеяния обмотки ротора [1]:
(30)
Найдем [1]:
(31)
Тогда относительное сопротивление намагничивающего контура , эквивалентное потерям в стали статора [1]:
(32)
Предварительно найдем через относительные параметры коэффициент рассеяния [1]:
(33)
(34)
Коэффициент ЭДС в номинальном режиме [1]:
Требуемая величина индукции в воздушном зазоре двигателя при номинальном режиме работы [1]:
.088 Тл(35)
Величина индукции в статоре: ТЛ
Определим диаметр ротора [1]:
(36)
И минимальную ширину зубца [1]:
(37)
2.7 Обмоточные данные статора
Число витков фазы обмотки статора [1]:
(38)
Число проводников в пазу [1]:
(39)
Сечение провода без изоляции [1]:
см(40)
Выбираем провод марки ПЭТВ с ближайшими по ГОСТу значениями:
см см см
Коэффициент заполнения паза
В качестве изоляции выберем один слой из фторопласта-4 толщиной 0.01 см.
2.8 Расчет магнитной цепи
Индукция в зубце и спинке статора соответственно равны 0.224 и 0.212. Из кривой намагниченности Э44 им соответствуют значения напряженности поля: ;
Индукция в зубце ротора определяется по расчетной ширине зубца [1]:
см(41)
Тл
Индукция в спинке ротора при см, равна Тл. Им соответствуют значения
Намагничивающая сила, затрачиваемая на проведение потока через статор и ротор [1]:
А(42)
А через воздушный зазор [1]:
А(43)
Полная н.с. на проведение потока через магнитную цепь:
А
Величина приведенного воздушного зазора:
см
... выполнении авиационных гироскопических указателей поворотов, на рис.21 показана одна из современных моделей прибора с питанием от постоянного электрического тока напряжением 27 в. 7.4. Авиационный гироскоп направления Несмотря на то, что гироскопический указатель поворотов позволяет выдерживать прямолинейный полет и совершать правильные развороты самолета, пользование одним этим прибором ...
... средств является неприемлемой, т.к. жёсткая конкуренция на рынке транспортных услуг требует сокращения времени технического обслуживания до минимума. Скорость и надёжность проверки, во многом зависит от «человеческого фактора». Поэтому проверка функционирования системы улучшения устойчивости самолёта является довольно длительным, трудоёмким процессом, что приводит к лишним затратам труда и ...
... частот вибраций и ускорений, возникающих на современных самолетах, выдерживают ударные перегрузки до 4g с частотой 40-100 ударов в 1 мин. Ниже приведены основные технические данные курсовой системы ТКС-П2. Допустимый уход гироскопов в режиме ГПК в нормальных условиях полета в широтах, отличающихся от широты последней балансировки гироузлов: менее ±20° …..………………………….…………………………. ±0,5°/ч ...
... вращении сохраняет заданное направление оси в пространстве. Датчиком угле искривления служит отвес. Измерения выполняют непрерывно по 6 стволу скважины. Приборами, в которых датчиком азимута служит буссоль, измерения азимута можно проводить только в открытом стволе скважины Гироскопические инклинометры позволяют измерять азимут в скважинах, обсаженных металлической колонной, а также в разрезах, в ...
0 комментариев