3.  Расчет дисперсии опыта

 

Построчная дисперсия для каждого эксперимента определяется по формуле:

(1)

(2)


где g и nu - номер и количество дублей эксперимента соответственно; - результат g-го повторения u-го эксперимента; - среднее арифметическое значение всех дублей u - го эксперимента; fu - число степеней свободы в u - м опыте при определении u - й построчной дисперсии .

Число степеней свободы – понятие, учитывающее в статистических ситуациях связи, ограничивающие свободу изменения случайных величин. Это число определяется как разность между числом выполненных опытов и числом констант (средних, коэффициентов и пр.), подсчитанных по результатам тех же опытов.

В нашем случае nu = 3, fu = 3 - 1 = 2. Тогда выражение (1) можно переписать следующим образом:

 (3)

Построчная дисперсия по выражению (3) рассчитывается для каждого u - го опыта отдельно. Результаты расчетов построчной дисперсии приведены в табл. 4.

Таблица 4

Результаты расчета построчной дисперсии

Номер

опыта, u

Номер дубля, g

Удельная потеря массы, , г/см2

Среднее арифметическое значение интенсивности изнашивания, , г/см2

Построчная дисперсия,

1 1 97,8 97,3 5,975
2 99,4
3 94,6
2 1 128,3 127,6 8,245
2 130,0
3 124,4
3 1 152,1 153,7 27,93
2 149,4
3 159,6
4 1 73,8 71,9 2,77
2 71,2
3 70,7
5 1 110,3 113,7 18,43
2 118,5
3 112,2
6 1 93,8 91,8 3,225
2 91,1
3 90,4
7 1 126,2 127,1 8,17
2 130,3
3 124,8
8 1 114,2 112,2 3,665
2 110,4
3 111,9

регрессия дисперсия дублирование

Приведем пример расчета построчной дисперсии в первом опыте (u = 1):

После определения построчных дисперсий производят проверку воспроизводимости экспериментальных данных. Проверка выполняется в том случае, если имеет место дублирование опытов, что является обязательным правилом при проведении планированного эксперимента. На этой стадии проверяется гипотеза о постоянстве дисперсии шума с использованием критерия Кохрена. Проверка данной гипотезы позволяет судить об однородности или неоднородности ряда дисперсий. Если ряд дисперсий однороден, различные значения функции отклика (y) определяются с одинаковой точностью. Если ряд дисперсий неоднороден, различные значения функции отклика (y) определяются с разной точностью.

Процедура проверки статистических гипотез в общем случае формально предусматривает сравнение некоторого критерия, рассчитанного по экспериментальным данным, с его табличным значением при выбранном заранее уровне значимости a. Уровень значимости a определяет наибольшую вероятность отвергнуть правильную гипотезу, т. е. наибольшую вероятность предположения о том, что экспериментальный результат ошибочен. Например, если уровень значимости выбирают равным 0,05 (что, очень часто делается в технических задачах), то это означает, что допускается 5%-ная вероятность неверного решения и доверительная 95%-ная вероятность верного.

Если найденное по экспериментальным данным значение критерия попадает в область, соответствующую уровню значимости, то проверяемая гипотеза неверна и ее следует отвергнуть, совершив ошибку с вероятностью a. Если же экспериментальное значение критерия попадает в область, соответствующую вероятности (1-a), то проверяемую гипотезу принимают, совершив ошибку, связанную уже с альтернативной гипотезой.

Расчетное значение критерия Кохрена рассчитывается по формуле:

, (4)

где - наибольшая в ряду дисперсия, которую сравнивают со значением G - критерия, взятым из табл. А1 (приложение А) в зависимости от уровня значимости a, числа степеней свободы fu и числа опытов N: G(a; fu; N). В рассматриваемом случае fu = 2; N = 8.

Из табл. 4 находим максимальную построчную дисперсию  и Тогда G pacч = 27,93/78,4 = 0,356.

Приняв значение уровня значимости a = 0,05, для числа степеней свободы fu = 2 и числа опытов N = 8 получим следующее табличное значение G-критерия: .

Если G pacч < , ряд дисперсий однороден. Если G pacч > , ряд дисперсий неоднороден.

В рассматриваемом примере G pacч > , т.е. ряд дисперсий неоднороден. Обычно такая ситуация возникает, если среди анализируемых экспериментальных данных имеются грубые ошибки или промахи, связанные с ошибками, допущенными при проведении эксперимента. В таком случае эксперимент следует повторить, тщательно проанализировав его с методологической точки зрения и уделив особое внимание методике сбора и обработки экспериментальных данных. Если при тщательном анализе экспериментальных данных грубых ошибок и промахов не выявлено, неоднородность ряда дисперсий означает, что значения функции отклика (y) действительно определены с разной точностью, однако в каждом отдельном опыте уровень шумов (ошибок) не выходит за границы допустимых значений. Именно такой вывод справедлив для результатов измерений и расчетов, представленных в табл. 4. Во всех дублях значения функции отклика очень плотно группируются относительно средних значений .



Информация о работе «Построение неполной квадратичной регрессионной модели по результатам полного факторного эксперимента»
Раздел: Экономико-математическое моделирование
Количество знаков с пробелами: 44276
Количество таблиц: 10
Количество изображений: 1

Похожие работы

Скачать
43750
1
33

вание отсеивающего эксперимента, основное значение которого выделение из всей совокупности факторов группы существенных факторов, подлежащих дальнейшему детальному изучению; планирование эксперимента для дисперсионного анализа, т.е. составление планов для объектов с качественными факторами; планирование регрессионного эксперимента, позволяющего получать регрессионные модели (полиномиальные и ...

Скачать
27346
16
5

... qвос = 0,05 (в данном случае Gкр=0,3894), то гипотеза об однородности выборочных дисперсий отвечает результатам наблюдений. В данном случае воспроизводимость эксперимента выполняется. 2.4 Построение диаграммы рассеяния Вид диаграммы рассеяния приведен на рисунке 1. Рисунок 1 Рассчитанные значения вкладов и количество выделяющихся точек для соответствующих факторов приведены в ...

Скачать
61279
0
7

... планирование отсеивающего эксперимента, основное значение которого выделение из всей совокупности факторов группы существенных факторов, подлежащих дальнейшему детальному изучению; ·           планирование эксперимента для дисперсионного анализа, т.е. составление планов для объектов с качественными факторами; ·           планирование регрессионного эксперимента, позволяющего получать ...

Скачать
83374
2
16

... ŷ = a0 + a1x , где ŷ - теоретические значения результативного признака, полученные по уравнению регрессии; a0 , a1 - коэффициенты (параметры) уравнения регрессии. Задача регрессионного анализа состоит в построении модели, позволяющей по значениям независимых показателей получать оценки значений зависимой переменной. Регрессионный анализ является основным средством исследования ...

0 комментариев


Наверх