5.  Проверка статистической значимости коэффициентов регрессии

Коэффициенты регрессии, рассчитанные по уравнению (7), строго говоря, определены не точно, а с некоторой погрешностью. Мерой этой погрешности является дисперсия оценок коэффициентов. Неизбежное наличие погрешности в определении коэффициентов регрессии обусловлено колебаниями значений функции отклика при дублировании экспериментов в каждом опыте. С учетом этого уравнение (7) можно записать в следующем виде:  Очевидно, что при достаточно малых значениях коэффициентов bi абсолютная погрешность их определения 2×Dbi, обусловленная погрешностью определения значений функции отклика, может оказаться недопустимо большой. В этом случае значение коэффициента следует признать статистически незначимым, а сам коэффициент исключить из регрессионной модели. Статистическая незначимость коэффициента означает отсутствие его влияния на исследуемый процесс.

Поскольку дублирование экспериментов равномерное, дисперсию оценок коэффициентов уравнения регрессии можно рассчитать по зависимости:


, (10)

где nu – количество дублей в каждом опыте (nu = 3); N – количество опытов (N = 8); - средняя дисперсия эксперимента.

Если ряд дисперсий однороден, средняя дисперсия эксперимента рассчитывается по уравнению:

, (11)

где - значения построчных дисперсий (табл. 4).

Если ряд дисперсий неоднороден (значения функции отклика в разных опытах определены с различной точностью), но в результатах измерений значений функции отклика отсутствуют грубые ошибки и промахи, в качестве средней дисперсии эксперимента принимается максимальная построчная дисперсия. В соответствии с данными табл. 4 максимальная построчная дисперсия получена в первом опыте: . Ее значение и принимаем как среднюю дисперсию эксперимента:. Тогда дисперсия оценок коэффициентов регрессии равна  

Среднеквадратичная ошибка оценки коэффициентов регрессии определяется как:

. (12)

Для рассматриваемого случая

Рассчитаем доверительный интервал коэффициентов регрессии :

, (13)

где - критерий Стьюдента, зависящий от уровня значимости a и числа степеней свободы f2 при определении дисперсии эксперимента:

Для полного факторного эксперимента 23 f2 = (3-1)×8 = 16.

Выбрав уровень значимости a = 0,05, при числе степеней свободы f2 = 16 из табл. Б1 (приложение Б) найдем табличное значение критерия Стьюдента (t-критерия) t0,05;16 = 2,12. По выражению (13) рассчитаем доверительный интервал коэффициентов регрессии:

Коэффициенты уравнения регрессии, абсолютная величина которых равна доверительному интервалу или больше его, следует признать статистически значимыми. Т.е. для статистически значимых коэффициентов должно выполняться условие:

 или . (14)

Условие (14) означает, что абсолютные значения статистически значимых коэффициентов регрессии bi должны не менее чем в раз превышать абсолютную ошибку их определения .

Статистически значимыми коэффициентами, точность оценки которых можно считать удовлетворительной, являются коэффициенты b0, b1, b2, b12 = b4, b13 = b5, b23 = b6 и b123 = b7.

Статистически незначимые коэффициенты (b3) из модели следует исключить, поскольку их значения не могут считаться достоверными.

Подставляя значения статистически значимых коэффициентов в выражение (9), получим следующее уравнение регрессии:

. (15)

6.  Проверка адекватности модели

Процедура проверки адекватности модели сводится к выполнению ряда последовательных вычислений:

1. Расчет теоретических значений функции отклика в каждом опыте по уравнению (15).

2. Сопоставление расчетных и экспериментальных значений функции отклика и нахождение дисперсии неадекватности.

3. Расчет критерия Фишера и окончательный вывод на основе сопоставления его расчетного и табличного значений об адекватности или неадекватности модели.

С помощью полученного уравнения (15) определим расчетные значения функции отклика (удельной потери массы y). Все значения Хi в данное уравнение входят в кодовом масштабе. Например, в 4-м опыте х1 = +1, х2 = +1, х3 = -1, х4 = +1, х7 = -1 (табл. 3, 5). Тогда расчетное значение удельной потери массы в этом опыте будет равно:

у(4) = 111,9-11,03+34,5-13,14-1,83-4,13-14,89= 101,38 г/см2.

Подсчитанные таким образом значения удельной потери массы приведены в табл. 6. Данные табл. 4 будем использовать для определения дисперсии неадекватности. При равномерном дублировании экспериментов дисперсия неадекватности определяется по зависимости:

; , (16)

где и - значения функции отклика в u-м эксперименте, соответственно рассчитанные по уравнению регрессии и определенные экспериментально; f1 – число степеней свободы; - число оставленных коэффициентов уравнения регрессии, включая b0 (); N - число опытов плана (N = 8). Тогда f1 = 8 - 7 = 1.

Таким образом, если из регрессионной модели исключен, хотя бы один статистически незначимый коэффициент (а это неизбежно, если варьируемые факторы действительно являются независимыми переменными), массив разностей будет содержать информацию об ошибках в предсказании значений функции отклика.

Таблица 6

Сопоставление экспериментальных и расчетных данных

Номер эксперимента, u

1 97,3 66,36 30,94 957,3
2 127,6 96,7 30,9 954,8
3 153,7 183,16 -29,46 867,9
4 71,9 101,38 -29,48 869,1
5 113,7 84,22 29,48 869,1
6 91,8 62,32 29,48 869,1
7 127,1 157,98 -30,88 953,6
8 112,2 143,08 -30,88 953,6

В рассматриваемом случае построенная модель (15) включает шесть коэффициентов: . Тогда в соответствии с выражением (16) .

Гипотеза об адекватности модели (15) проверяется по критерию Фишера. Его расчетное значение находим по уравнению:

. (17)

.

Из выражения (17) следует, что расчетное значение критерия Фишера представляет собой отно­шение дисперсии неадекватности к дисперсии опыта. По сути дела он позволяет ответить на вопрос: во сколько раз модель предсказывает значения функции отклика хуже по сравнению с опытом? Тогда табличное значение критерия Фишера должно регламентировать допустимое отклонение расчетных значений функции отклика относительно опытных данных.

Табличное значение критерия Фишера определяется в зависимости от уровня значимости a и числа степеней свободы f1 и f2, определенных ранее: F(a; f1; f2). При уровне значимости a = 0,05 табличное значение F - критерия (табл. В1, приложение В) равно .

 


Информация о работе «Построение неполной квадратичной регрессионной модели по результатам полного факторного эксперимента»
Раздел: Экономико-математическое моделирование
Количество знаков с пробелами: 44276
Количество таблиц: 10
Количество изображений: 1

Похожие работы

Скачать
43750
1
33

вание отсеивающего эксперимента, основное значение которого выделение из всей совокупности факторов группы существенных факторов, подлежащих дальнейшему детальному изучению; планирование эксперимента для дисперсионного анализа, т.е. составление планов для объектов с качественными факторами; планирование регрессионного эксперимента, позволяющего получать регрессионные модели (полиномиальные и ...

Скачать
27346
16
5

... qвос = 0,05 (в данном случае Gкр=0,3894), то гипотеза об однородности выборочных дисперсий отвечает результатам наблюдений. В данном случае воспроизводимость эксперимента выполняется. 2.4 Построение диаграммы рассеяния Вид диаграммы рассеяния приведен на рисунке 1. Рисунок 1 Рассчитанные значения вкладов и количество выделяющихся точек для соответствующих факторов приведены в ...

Скачать
61279
0
7

... планирование отсеивающего эксперимента, основное значение которого выделение из всей совокупности факторов группы существенных факторов, подлежащих дальнейшему детальному изучению; ·           планирование эксперимента для дисперсионного анализа, т.е. составление планов для объектов с качественными факторами; ·           планирование регрессионного эксперимента, позволяющего получать ...

Скачать
83374
2
16

... ŷ = a0 + a1x , где ŷ - теоретические значения результативного признака, полученные по уравнению регрессии; a0 , a1 - коэффициенты (параметры) уравнения регрессии. Задача регрессионного анализа состоит в построении модели, позволяющей по значениям независимых показателей получать оценки значений зависимой переменной. Регрессионный анализ является основным средством исследования ...

0 комментариев


Наверх