2.3 Выбор наилучших вариантов засечки

 

Для выбора лучших вариантов засечки производятся те же действия, что и при прямой засечке:

-  строятся инверсионные треугольники (вершинами этих треугольников будут только конечные точки отрезков ri)

-  визуально определяются треугольники с большими площадями, и именно они выбираются для решения обратной засечки.

В моем варианте были выбраны треугольники 3-4-1 и 3-4-2 для решения.

2.4 Решение наилучших вариантов засечки

 

Вычисление координат дополнительного пункта, определенного обратной многократной засечкой, приведены в табл. 4.

Таблица 4 - Схема для вычислений обратной угловой засечки.

обозначение пунктов координаты - ∆XBC - ΔYBC
A XA YA αAP - tg αAP -
β2 ∆XBC ctg β2 ΔYBC
B XB YB αBP - tg αBP -
β3 ∆XCA ctg β3 ΔYCA
C XC YC - -
P XP YP YP’ ∆X0

tg αAP -

tg αBP

ΔY0

Для решения задачи сначала я определила дирекционный угол направления АР, принятого в качестве главного, по формуле Деламбра:

 (5),

далее определяем дирекционный угол следующего направления:

 (6).

После того, как определила дирекционные углы направлений АР и ВР, вычислила координаты точки Р по формулам Гаусса:

 (7)

 (8)

Для контроля вычислений применила формулу:

 (9).

В формулах (5-9) обозначения соответствуют схеме, представленной на рисунке 2.


Рисунок 2 – Схема обозначений к вычислениям.

Решение задачи представлено в таблицах 5 и 6.

Таблица 5 – Решение обратной угловой засечки.

Обозначение пунктов координаты - -247,86 - 641,35
3 (A) 6653,66 2959,70

24148’22”

- 1,865475 -

9550’57”

699,51 -0,102443 250,50
4 (B) 7353,17 3210,20

33739’19”

- -0,411042 -

18240’19”

-451,65 21,427930 -891,85
1 (С) 7150,31 3851,55 - 0 - 0
P 6890,00 3400,58 3400,58 -10390,93 2,276517 -19384,02

Таблица 6 – Решение обратной угловой засечки.

Обозначение пунктов координаты - -739,31 - 606,23
3 (A) 6653,66 2959,70

24148’18”

- 1,865398 -

9550’57”

699,51 -0,102443 250,50
4 (B) 7353,17 3210,20

33739’15”

- -0,411065 -

24146’55”

39,8 0,536601 -856,73
2 (C) 6613,86 3816,43 - 0 - 0
P 6890,01 3400,59 3400,59 -656,53 2,276463 -1224,69

Координаты в двух вариантах различны, но расхождения не превышают 0,2 м, за окончательные значения координат принимаем их средние значения:

Среднее Х=6890,005

Среднее Y=3400,585.

 


Информация о работе «Уравнивание геодезических сетей сгущения упрощенным способом»
Раздел: Геология
Количество знаков с пробелами: 30079
Количество таблиц: 13
Количество изображений: 2

Похожие работы

Скачать
43267
22
7

... 1 5008,50 1000,00 1753,45 2748,03 2376,28 72 º28'50'' 101 º12'25'' 351 º18'32'' Луговое Аграрное Свобода 2. Уравновешивание систем ходов плановой съемочной сети 2.1 Уравновешивание систем теодолитных ходов с одной узловой точкой 2.1.1 Задание Произвести уравновешивание систем теодолитных ходов, сходящихся в узловой точке 3 и опирающихся ...

Скачать
88097
19
0

... с ценой деления 1 сек. Области применения: построение геодезических сетей сгущения (триангуляция 4 класса, полигонометрия IV класса), в прикладной геодезии (строительство, изыскания и т.д.), астрономо- геодезических измерениях (определение азимута по Солнцу и по Полярной Звезде). Модель 3Т5КП предназначена для измерения горизонтальных и вертикальных углов и не имеет микрометра. Области ...

Скачать
36783
0
2

... по формуле: ¦x=åDx-(xк-xн); ¦y=åDy-(yк-yн) сумма поправок приращений должна равнятся нулю. dxBC+dxCD+dXDE+¦x=0 dyBC+dyCD+dyDE+¦=0 4.   Упрощенное уравнивание центральной системы. В центральной системе возникает условное уравнение фигур, горизонта и полюса. Математически эти условия выражаются уравнениями поправок. Число условных уравнений фигур ...

Скачать
27378
0
9

... в полосе съемке со смежных станций. В простейшем случае составление плана по результатам тахеометрической съемки начинают с построения координатной сетки и нанесению по координатам точек теодолитного хода. Правильность нанесения точек хода контролируют по длинам его сторон: измеряют расстояния между вершинами – выраженными в масштабе, они должны быть равны расстояниям между соответствующими ...

0 комментариев


Наверх