1.11 Построение индикаторной диаграммы
Построение индикаторной диаграммы ДВС производим в координатах р - V (давление - объем) или p-S (давление - ход поршня) на основании данных расчета рабочего процесса.
В начале построения на оси абсцисс откладывается отрезок АВ, соответствующий рабочему объему цилиндра, а по величине равный ходу поршня в масштабе , который в зависимости от величины хода поршня принимаем: .
Отрезок ОА, соответствующий объему камеры сгорания:
. (51)
Масштаб давлений принимаем: .
По данным теплового расчета на диаграмме откладываем в выбранном масштабе величины давлений в характерных точках: .
Построение политроп сжатия и расширения осуществляем графическим методом.
При построении из начала координат проводим луч ОС под произвольным углом а к оси абсцисс (), а также лучи OD и ОЕ под определенными углами и к оси ординат, равными:
; (52)
. (53)
Политропу расширения строим с помощью лучей ОС и ОЕ, начиная из точки z, а политропу сжатия строим с помощью лучей ОС и OD, начиная с точки с.
На заключительном этапе построения наносим линии впуска и выпуска, а также производим скругления с учетом фаз газораспределения, опережения зажигания (впрыска), скорости нарастания давления в процессе сгорания. Для этого на диаграмме отмечаем положение следующих характерных точек: .
Давление в конце такта сжатия:
. (54)
Для нанесения этих точек характерных точек на диаграмму установим взаимосвязь между углом поворота коленчатого вала и перемещением поршня. Применим для этого метод Брикса. Под индикаторной диаграммой строим вспомогательную полуокружность радиусом , равным половине хода поршня. Далее от центра полуокружности (точка ) в сторону н.м.т. откладываем поправку Брикса:
. (55)
где - для автомобильных двигателей:
.
Ориентировочные значения углов поворота коленчатого вала, определяющих положение характерных точек действительной индикаторной диаграммы:
; ;
; ;
; ;
.
Нанесенные на диаграмму характерные точки соединяются плавными кривыми.
Рисунок 1 – Индикаторная диаграмма бензинового двигателя
двигатель топливо скоростной
2. Расчет и построение внешней скоростной характеристики двигателя
Построение кривых скоростной характеристики ведем в интервале частот вращения коленчатого вала: от до .
Расчетные точки кривых эффективной мощности и эффективного удельного расхода топлива определим по следующим зависимостям:
; (56)
, (57)
где - соответственно номинальная эффективная мощность (кВт), частота вращения коленчатого вала при номинальной мощности (), удельный эффективный расход топлива при номинальной мощности () ;
- соответственно эффективная мощность (кВт), удельный эффективный расход топлива (), частота вращения коленчатого вала () в искомой точке скоростной характеристики;
- коэффициенты, значения которых устанавливают экспериментально.
Для бензинового двигателя: ; ; ; ; .
Рассчитанные точки кривых эффективной мощности и эффективного удельного расхода топлива сведем в таблицу 1.
Точки кривых эффективного крутящего момента и часового расхода топлива определим по формулам:
; (58)
(59)
Рассчитанные точки кривых эффективного крутящего момента и часового расхода топлива сведем в таблицу 1.
Таблица 1 – Значения эффективной мощности , эффективного удельного расхода топлива , эффективного крутящего момента и часового расхода топлива в зависимости от частоты вращения коленчатого вала .
Параметр | Размерность | Значения параметров | ||||||
n | мин-1 | 800 | 1700 | 2600 | 3500 | 4400 | 5300 | 6200 |
Ne | кВт | 17,785 | 40,799 | 64,039 | 84,439 | 98,929 | 104,441 | 97,906 |
ge | г/(кВт∙ч) | 238,320 | 214,711 | 201,404 | 198,399 | 205,696 | 223,296 | 251,198 |
Ме | Н∙м | 212,401 | 229,292 | 235,324 | 230,498 | 214,814 | 188,272 | 150,873 |
GT | кг/ч | 4,239 | 8,760 | 12,898 | 16,753 | 20,349 | 23,321 | 24,594 |
По рассчитанным значениям параметров , , , для ряда значений n производим построение внешней скоростной характеристики.
Рисунок 2 – Внешняя скоростная характеристика бензинового двигателя
С помощью построенной характеристики определяем максимальный эффективный крутящий момент: и минимальный эффективный удельный расход топлива: , а также коэффициент приспособляемости К:
. (60)
где - эффективный крутящий момент при номинальной мощности.
... 137.1 31.2 217.5 1590 634.3 105.6 29.7 360 1060 582.0 64.60 27.9 630 530 482.5 26.78 25,63 957.1 4. Заключение Первый раздел курсового проекта “Тепловой и динамический расчет двигателя” выполнен в соответствии с заданием на основе методической и учебной технической литературы. Рассчитанные показатели рабочего цикла, работы, размеров, кинематики и динамики проектируемого ...
... 85 231,9 149,4 19,7 10 6018 83,4 248,4 132,4 20,7 11 6600 77,5 269 112,2 20,8 По полученным значениям производим построение внешней скоростной характеристики. 3 Динамический расчет КШМ двигателя 3.1 Расчет сил давления газов Сила давления газов, Н: (3.1) где – атмосферное давление, МПа; , – абсолютное и избыточное давление газов над поршнем в рассматриваемый ...
... цилиндров и примерно такую же среднюю скорость поршня,что и проектируемый двигатель. В нашем случае прототипом является двигатель ЗИЛ-130. Его характеристики: Определяем положение точек : Динамический расчётВыбор масштабов:Давления Угол поворота коленвала Ход поршня Диаграмма удельных сил инерции Pj возвратно-поступательных движущехся масс КШМ Диаграмма ...
... или рад в мм, где OB— длина развернутой индикаторной диаграммы, мм. По развернутой диаграмме через каждые 10° угла поворота кривошипа определяют значения ∆pг и заносят в гр. 2 сводной таблицы динамического расчета (в таблице значения даны через 30° и точка при φ=370°). Приведение масс частей кривошипно-шатунного механизма С учетом диаметра цилиндра, отношения , рядного ...
0 комментариев