5.3.4 Расчет дисперсии и спектра величины на выходе САУ

Рисунок 5.3.7 Функции спектральной плотности реализаций Z


Освоив математический аппарата частотного моделирования, попробуем рассчитать дисперсию и спектр на выходе системы автоматической стабилизации плотности шлама, разгружаемого из гидростатического отстойника. На входе САУ действует целый комплекс возмущающих воздействий. При этом на выходе САУ наблюдается приведенное возмущение:

u  0, z = y.

Для расчета спектра выходной величины обратимся к модели апериодического звена первого порядка с запаздыванием.

Задаём нормированный параметр канала управления:

’ = /T = 1мин./15мин.= 0.066 у.е.вр.

В САУ время нормируется по постоянной T канала управления.

Задаем нормированные параметры входа САУ:

D’z = 1, T’СП = 10 у.е.

Этим мы определяем область фильтрации приведенного возмущения:

TСП = T’СПT = 10у.е.15мин. = 150мин,

T12 = TСП / T10 = 150мин. / 0,3о.е. = 500мин.

Грубо рассматриваемая САУ может полноценно фильтровать коррелированные шумы со временем спада в четверть часа и закономерные составляющие с периодом появления 4 часа.

Нормированные параметры регулятора устанавливаем по подсказке преподавателя:

K’Р = 1, K’I = 0,5.

Рассчитываем с помощью специализированной программы частотные характеристики САУ. Функция спектральной плотности входной и выходной величины САУ показаны на рис. 5.3.8.


Рисунок 5.3.8 Функции спектральной плотности на входе и выходе САУ


Нормированная выходная дисперсия равна 0,101793 (D’y=0,101793), что означает снижение входной дисперсии в 9,8 раз.

Определим теперь степень снижения диапазона колебаний стабилизируемой величины y после подключения САУ:

0,32

Чтобы рассчитать абсолютное СКВО, требуется знать дисперсию шума, подаваемого на вход САУ. Для этого на практике выбирают отрезок времени, в течение которого регулятор был отключен, и изучают колебания выходной величины. В нашем случае дисперсия колебаний Y равна 0,0009 (т/м3)2, СКВО равно 0,3 т/м3.

Абсолютное СКВО рассчитываем по формуле:

0,0095 т/м3.

4 СКВО дают наиболее вероятный диапазон колебаний стабилизируемой величины y в абсолютных единицах:

Дy = 4y = 40,0095 = 0,038 т/м3.


Анализируя этот материал, мы можем сделать следующие выводы:

Расчетные статистики выгодно использовать для сопоставительного анализа неслучайных свойств изменяющихся во времени величин или одной и той же величин, но в разные моменты ее "жизни",

Средний уровень изменений Х(t) фиксирует статистическая оценка Хср;

Оценкой скорости колебаний может служить время спада автокорреляционной функции, чем она больше, тем медленнее в среднем колеблется Х(t);

Анализ спектра колебаний позволяет дополнительно увидеть, на каких частотах преимущественно сосредоточена мощность колебаний Х(t).


5.4 Устойчивость САУ. Классы требований к качеству управления


5.4.1 Формулирование требований к САУ


Рассматривается система автоматического регулирования подачи топлива в печь спекания. Для спекания шихты на глиноземных заводах используются трубчатые вращающиеся печи. С одной стороны в печь поступает топливо – угольная пыль в смеси с воздухом. С другой стороны в печь подается сырье – и выводятся газы. Получаемый продукт – спек – из печей подается на участок дробления.

Нормальная работа печи спекания характеризуется определенной концентрацией кислорода в отходящих газах, по которой косвенно оценивают количество сгораемого топлива. Чем больше топлива сгорает в печи, тем меньше становится концентрация кислорода в отходящих газах.

Если концентрация по показаниям прибора превышает задание, необходимо увеличить подачу топлива в печь, повышая частоту вращения привода.

Система автоматического регулирования подачи топлива в печь спекания относится к тем САУ, для которых не важно наличие небольшой статической ошибки регулирования. Поэтому относим эту системы к классу "В" (классификация САУ по статическим свойствам).

Итак, формализовались требования к САУ в рамках описанной классификации: устойчивость, класс "В", группа II.


5.4.2 Выбор области работы САУ


Канал управления в нашей системе идентифицирован как звено первого порядка с запаздыванием: S=1. Нами определено среднее значение нормированного транспортного запаздывания: '=0,066. Ориентируясь на желание минимизации дисперсии и длительности переходных процессов, наиболее приемлемой считаем рабочий район поиска настроек:

K'P - от 2 до 4, K'I - от 1 до 2 (назовем этот район базовым).

Ниже приведены годографы Найквиста для трех точек, выбранных на графике области устойчивости в пространстве для систем типа S=1.



Анализируя графики, делаем вывод, что система наиболее устойчива при значениях коэффициентов Кр = 2,1 и KI=0,7 (т.е. третий график).

Проделаем то же самое для трех точек, выбранных на графике области работы САУ, при S=1 и ' = 0,066.

Для нашей системы типа II класса В значения коэффициентов:

K'P - от 10 до 12, K'I - от 2 до 4.

В этих пределах система не устойчива (ниже приведен годограф Найквиста при значениях K'P =10, K'I = 2).



Рассмотрим поведение системы при изменении оптимального значения коэффициента KI в диапазоне 30%.

При KI=0,5 получаем графики:


При KI=0,9 получаем графики:



Используя критерий Найквиста, определили область устойчивости нашей системы и оптимальные значения коэффициентов. Выбрали этот критерий, потому что он позволяет легко определить, устойчива система или нет с помощью годографа.

Определили, что хотя система и относится ко второму типу, при выбранных трех точках значений коэффициентов, она не устойчива в этих пределах.


Заключение

В данном курсовом проекте, в соответствии с поставленной задачей управления, была предложена модернизация системы управления котлоагрегатом.

Была разработана функциональная схема котлоагрегата и произведен выбор полевой автоматики.

В качестве технической базы спроектированной системы автоматизации был предложен регулирующий микропроцессорный контроллер GE Fanuc и персональная ЭВМ. Преимуществом модернизированной системы является более точная реализация процесса регулирования, основанная на цифровой обработке информации.

Использование ПЭВМ со SCADA-пакетом CYMPLICITY даёт большие возможности для представления информации человеку, функцией которого является многокритериальное управление котлоагрегатом.

Результат применения предлагаемой модернизации состоит в стабилизации параметров технологического процесса, за счёт увеличения объёма и качества обработки информации, позволяющей технологическому персоналу принимать своевременные и оптимальные решения при внештатных ситуациях.


СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ:


М.И. Резников, Ю.М. Липов «Паровые котлы тепловых электростанций»

Н.А. Киселев «Промышленные котельные установки»

«Эксплуатация паровых котлов и паротрубопроводов» под ред. Божко

Н.И Еремин, А.Н Наумчик, В.Г Казаков «Процессы и аппараты глиноземного производства»

Н.А. Киселев «Устройство и эксплуатация котлов»

В.М. Максимов «Котельные агрегаты большой паропроизводительности»

В.Г. Александров «Паровые котлы средней и малой мощности»

«Теплотехника» под редакцией А.П. Баскакова

С.Я. Белинский «Теплофикация и теплоэлектроцентрали»

«Учет и контроль расхода энергоносителей и тепловой энергии» под редакцией В.С. Кахановича

«Основы автоматизации для металлургов» под редакцией И.А. Грязновой

Н.Я. Турчин «Инженерное оборудование тепловых электростанций и монтажные работы»

А.С. Клюев, А.Т. Лебедев, С.И.Новиков «Наладка систем автоматического регулирования барабанных паровых котлов»

Н.Н.Лариков «Теплотехника»

«Справочник эксплуатационника газовых котельных»

П.Н.Мануйлов «Теплотехнические измерения и автоматизация тепловых процессов»

В.С.Чистяков «Краткий справочник по теплотехническим измерениям»

В.С.Вергазов «Устройство и эксплуатация котлов». Справочник.

А.М., В.А.,П.Г.Удыма «Проектирование, монтаж и эксплуатация тепломассообменных установок»

Д.Н. Кемельман, Н.Б.Эскин «Наладка котельных установок». Справочник.

Р.Беккер «Теория теплоты».



Инженерный синтез основной системы регулирования


Любая система регулирования должна поддерживать регулируемую величину с наименьшими отклонениями от заданного значения. На практике чаще всего требуемая точность работы может быть достигнута за счет повышения чувствительности регулятора к отклонениям регулируемой величины. Однако это может привести к возникновению колебаний в замкнутой системе автоматического регулирования и потере устойчивости. В связи с этим обеспечивание устойчивости при всех встречающихся на практике режимах работы объекта автоматизации (для данной курсовой работы = это автоматизации котлоагрегата) является первоочередной задачей проектирования, наладки и эксплуатации систем регулирования.

Имеется котлоагрегат (ОУ). Вода, проходя через котлоагрегат, нагревается паром с регулируемым расходом. Необходимо синтезировать робастную систему автоматического регулирования температуры воды на выходе котлоагрегата. Управляемой величиной Y будет температура воды на выходе, а управляющим воздействием U – расход пара на котлоагрегат (процент открытия клапана на трубопроводе пара).

Исходные данные:

U=1

Y= 1+0.01*n=1+0.01*22=1.22, где n – номер варианта

Транспортное запаздывание:

=2+n/4=2+22/4=7.5

Постоянная времени

T=10+n/4=10+22/4=15.5

Программный пакет Р2_0 имитирует работу одноконтурной линейной САР. Канал ОУ в нем задан инерционным звеном первого порядка



Рис.1 Структурная схема одноконтурной линейной системы автоматического регулирования стабилизации с ПИ – регулятором.


XY – приведенное возмущение; YZ – заданное значение; X1 – контролируемое значение;

X2 – шумы в канале возмущения; X3 – шумы в канале управления.


Блоки 1…4 – блоки формирования воздействий XY, X1, X2, X3 можно задать с помощью меандра или синусоиды, их параметры – амплитуда и полупериод колебаний.

Блок 5 – блок формирования YZ (задание).

Блок 6 – компенсатор возмущения (KB) Х1 - пропорциональное звено, если равно 0, то KB не работает.

Блок 7- канал управления - инерционное звено первого порядка, описывается тремя параметрами:

K1- коэффициент усиления;

T1- постоянная времени;

R1 - транспортное запаздывание.

Блок 8- канал передачи возмущения X1 - инерционное звено первого порядка.

Параметры: K2, T2, R2.

Блок 9- измеритель величины.

Параметры: К3, Т3, R3. Если T2=R2, то непрерывное автоматическое измерение.

Блок 10- ПИД-регулятор. Передаточная функция: - K0 (1+L0/p+ R0*р).

K0- коэффициент усиления;

L0- постоянная интегрирования;

R0 - постоянная дифференцирования.


Анализ реакций нерегулируемого объекта управления на типовые воздействия.

Строим график переходного процесса (рис.2) при подаче на вход ОУ – меандра. Для этого задаем входное воздействие с помощью звена X3. При этом обнуляем приведенное возмущение ХУ и отключаем ПИ – регулятор.

Рис.2 Переходной процесс при подаче на вход - меандра

Строим график переходного процесса при подаче на вход ОУ – синусоиды. Входное воздействие задаем с помощью звена X3, и обнуляем приведенное возмущение ХУ и отключаем ПИ – регулятор.

Рис.3 Переходной процесс при подаче на вход – синусоиды


Строим (рис.4) амплитудно-частотную характеристику (АЧХ) ОУ (инерционного звена первого порядка). Для этого подаем на вход ОУ синусоидальное воздействие. С помощью изменения полупериода находим значения амплитуды по графику. Делаем несколько замеров, и строим АЧХ. На графике (рис.4) показана зависимость частоты от амплитуды.

Частота 0,05 0,025 0,016 0,0125 0,01 0,0083 0,0071
Амплитуда 0,36 0,56 0,76 0,8 0,9 1 1,1

Рис.4 Амплитудно-частотная характеристика


Настройка ПИ – регулятора на наилучшее качество переходного процесса


Для базового объекта, характеризующегося пятью заданными параметрами – K1, R1, T1, Т3, R3 выполняем настройку ПИ – регулятора. Для этого подбираем K0, L0, R0 (табл.1) и настраиваем систему на наилучшее качество переходного процесса.

Таблица 1

К1 Т1 R1 T3 R3 K0 L0 R0

Tрег.

Gпер Kзат. Tсоб. Vсоб.
1 1,22 15,5 7,5 0 0 0,885 0,105 0 69 20 2,5 58 0,04
2 1,22 15,5 7,5 0 0 0,895 0,095 0 71 16 4 48 0,055
3 1,22 15,5 7,5 0 0 0,905 0,075 0 47 8 2,6 47 0,056
4 1,22 15,5 7,5 0 0 0,937 0,0665 0 43 7,5 - - -

5

1,22

15,5

7,5

0

0

0,817

0,056

0

27

-

-

-

-


Tрег - время регулирования (мин.);

Gпер – перерегулирование, % (Gпер = в);

Kзат – коэффициент затухания, Kзат=в/а;

Tсоб – период собственных колебаний, мин.;

Vсоб. – частота собственных колебаний, Vсоб =2/ Tсоб.

Вывод:


Синтез робастной САР, учитывающий дрейф и неточные знания параметров ОУ


Анализируем 2 варианта K1, T1, R1 при определенных наилучших настройках ПИ регулятора, результаты заносим в таблицу (табл.2)

первый вариант - условно благоприятный объект - параметры объекта управления на 30% ниже номинала;

второй вариант – условно неблагоприятный объект – параметры объекта управления на 30% выше номинала.

Таблица 2

K1 T1 R1 T3 R3 K0 L0 R0 Tрег Gпер Kзат. Tсоб. Vсоб

1

0,854

10,85

5,25

0

0

0,817

0,056

0

72

16

4

60

0,1

2 1,586 20,15 9,75 0 0 0,817 0,056 0 74 - - - -


Информация о работе «Система автоматизации на котлоагрегатах»
Раздел: Разное
Количество знаков с пробелами: 147822
Количество таблиц: 34
Количество изображений: 94

Похожие работы

Скачать
31450
1
14

... /см2) предназначены для выработки насыщенного или перегретого пара, используемого для технологических нужд промышленных предприятий, на теплоснабжение систем отопления и горячего водоснабжения. Масса котельной установки 16,5 т, температура питательной воды 100 С, температура пара 210 С. В качестве сжигаемого топлива используют газ или мазут.Котлы двухбарабанные вертикально-водотрубные выполнены по ...

Скачать
76118
8
10

... чином вище сформульовано і зазначено основні пропозиції КП «Здолбунівкомуненергія» щодо покращення управління персоналом. 3.3 Реструктуризація виробництва, як шлях стратегічного управління Як було зазначено в пункті 2.1 даної курсової роботи на підприємстві КП «Здолбунівкомуненергія» здебільшого такі котельні установки, ресурсний потенціал яких давно вичерпаний. Відповідно підприємство у ...

Скачать
45097
0
6

... режимов функционирования котла. Повышение экологических характеристик котельной и культуру производственного процесса. Благодаря программному управлению система автоматически отслеживает все параметры текущих процессов, реализуемых водогрейными и паровыми котлами, и управляет технологическим оборудованием, обеспечивая нормальное и безаварийное функционирование котельной установки. Кроме того, ...

Скачать
69188
29
11

... , по приведённой методике, производится расчёт экономической эффективности внедрения автоматизации редукционно-охладительной установи и сравнение технико-экономических показателей работы подразделения. Экономическая эффективность внедрения системы автоматического контроля и регулирования редукционно-охладительной установки определяется путём сопоставления технико-экономических показателей работы ...

0 комментариев


Наверх