Запись схемы скрещивания, отражающая пра­вило единообразия гибридов первого поколения

Билеты по биологии 11 класс
Адаптивный характер модификационной из­менчивости — приспособительная реакция орга­низмов на изменения условий среды Этапы энергетического обмена: подготови­тельный, бескислородный, кислородный Жизненный цикл клетки: интерфаза (период подготовки клетки к делению) и митоз (деление) Запись схемы скрещивания, отражающая пра­вило единообразия гибридов первого поколения Группа сцепления — хромосома, в которой расположено большое число генов. Соответствие групп сцепления числу хромосом Скрещивание и отбор — универсальные мето­ды селекции, возможность их применения при со­здании новых сортов растений и пород животных Сравнение естественного и искусственного отбора Причины многообразия видов. Их возникно­вение благодаря наследственной изменчивости, действию борьбы за существование и естественного отбора Причины приспособленности — движущие си­лы эволюции: наследственная изменчивость, борьба за существование, естественный отбор
134680
знаков
2
таблицы
0
изображений

4. Запись схемы скрещивания, отражающая пра­вило единообразия гибридов первого поколения.

Особи с генотипом Аа имеют жел­тый цвет семян, так как ген А до­минирует над геном а.

3. Для обнаружения ферментов надо на кусочки сы­рого и вареного картофеля нанести по капле перок-сида водорода (Н2О2), наблюдать, где произойдет его «вскипание». Под влиянием фермента пероксидазы в клетках сырого картофеля происходит реакция разложения пероксида водорода с выделением кис­лорода, вызывающего «вскипание». При варке кар­тофеля фермент разрушается, поэтому на срезе варе­ного картофеля «вскипания» не происходит.


Билет № 15

1. Индивидуальное развитие организма (онто­генез) — период жизни, который при половом раз­множении начинается с образования зиготы, ха­рактеризуется необратимыми изменениями (увели­чением массы, размеров, появлением новых тканей и органов) и завершается смертью.

2. Зародышевый (эмбриональный) и послезаро-дышевый (постэмбриональный) периоды индиви­дуального развития организма.

3. Послезародышевое развитие (приходит на смену зародышевому) — период от рождения или выхода зародыша из яйца до смерти. Различные пути послезародышевого развития животных — прямое и непрямое:

1) прямое развитие — рождение потомства, внешне похожего на взрослый организм. Примеры: развитие рыб, пресмыкающихся, птиц, млекопита­ющих, некоторых видов насекомых. Так, малек рыбы похож на взрослую рыбу, утенок на утку, ко­тенок на кошку;

2) непрямое развитие — рождение или выход из яйца потомства, отличающегося от взрослого орга­низма но морфологическим признакам, образу жизни (типу питания, характеру передвижения). Пример: из яиц майского жука появляются черве­образные личинки, живут в почве и питаются кор­нями в отличие от взрослого жука (живет на дере­ве, питается листьями).

Стадии непрямого развития насекомых: яйцо, личинка, куколка, взрослая особь. Особенности жизни животных на стадии яйца и куколки — они неподвижны. Активный образ жизни личинки и взрослого организма, разные условия обитания, ис­пользование разной пищи.

4. Значение непрямого развития — ослабление конкуренции между родителями и потомством, так как они поедают разную пищу, у них разные места обитания. Непрямое развитие — важное приспособ­ление, возникшее в процессе эволюции. Оно способ ствует ослаблению борьбы за существование между родителями и потомством, выживанию животных на ранних стадиях послезародышевого развития.

2. 1. Изучение Г. Менделем наследственности с помощью гибридологического метода — скре­щивания родительских форм, различающихся по определенным признакам, и изучение характера их наследования в ряду поколений.

2. Скрещивание гомозиготной доминантной и рецессивной особей, появление в первом гибрид­ном поколении всех особей с доминантным призна­ком. Причина: все гибридные особи имеют гетеро­зиготный генотип, например, Аа, в котором доми­нантный ген подавляет рецессивный.

3. Проявление закона расщепления при скре­щивании между собой гибридов первого поколе­ния Аа хАа. Дальнейшее размножение гибридов — причина расщепления, появления в потомстве F2 особей с рецессивными признаками, составляющих примерно четвертую часть от всего потомства.

4. Причины отсутствия расщепления во втором и последующих поколениях гомозиготных рецес­сивных особей — образование гамет одного типа, наличие в них лишь рецессивного гена, например, гамет с генами а. Слияние при оплодотворении мужской и женской гамет с генами а и а — причи­на образования гомозиготного потомства с рецес­сивным генотипом — аа.

5. Гомозиготы — организмы, содержащие в клетках два одинаковых гена по данному признаку (АА либо аа), отсутствие у них расщепления призна­ков в последующих поколениях. Гетерозиготы — ор­ганизмы, содержащие в клетках разные гены по ка­кому-либо признаку (Аа), дающие расщепление признаков в последующих поколениях.

3. Надо исходить из того, что ДНК служит матри­цей для иРНК, она обеспечивает последовательность нуклеотидов в иРНК. Двойная спираль ДНК с помощью ферментов разъединяется, к одной ее цепи пос­тупают нуклеотиды. На основе принципа дополните­льности нуклеотиды располагаются и фиксируются на матрице ДНК в строго определенной последова­тельности. Так, к нуклеотиду Ц всегда присоеди­няется нуклеотид Г или наоборот: к Г — Ц, а к нук­леотиду А — У (в РНК вместо тимина нуклеотид урацил). Затем нуклеотиды соединяются между со­бой и молекула иРНК сходит с матрицы.


Билет № 16

1. 1. Ген — отрезок молекулы ДНК, носитель на­следственной информации о первичной структуре одного белка. Локализация в одной молекуле ДНК нескольких сотен генов. Каждая молекула ДНК — носитель наследственной информации о первичной структуре сотен молекул белка.

2. Хромосома — важная составная часть ядра, состоящая из одной молекулы ДНК в соединении с молекулами белка. Следовательно, хромосомы — носители наследственной информации. Число, фор­ма и размеры хромосом — главный признак, гене­тический критерий вида. Изменение числа, формы или размера хромосом — причина мутаций, кото­рые часто вредны для организма.

3. Высокая активность деспирализованных хромосом в период интерфазы. Самоудвоение мо­лекул ДНК, их участие в синтезе иРНК, белка.

4. Ген (отрезок молекулы ДНК) — матрица для синтеза иРНК, а иРНК — матрица для синтеза бел­ка. Матричный характер реакций самоудвоения молекул ДНК, синтеза иРНК, белка — основа пере­дачи наследственной информации от гена к призна­ку, который определяется молекулами белка. Мно­гообразие белков, их специфичность, многофунк­циональность — основа формирования различных признаков у организма, реализации заложенной в генах наследственной информации.

5. Самоудвоение хромосом, сиирализация, чет­кий механизм их распределения между дочерни­ми клетками в процессе митоза — путь передачи наследственной информации от материнской к до­черним клеткам.

6. Путь передачи наследственной информации от родителей потомству: образование половых кле­ток с гаплоидным набором хромосом, оплодотворе­ние, образование зиготы — первой клетки Дочерне­го организма с диплоидным набором хромосом.

2.  1. Многообразие видов растений, животных и других организмов, их закономерное расселение в природе, возникновение в процессе эволюции отно­сительно постоянных природных комплексов.

2. Биогеоценоз (экосистема) — совокупность взаимосвязанных видов (популяций разных ви­дов), длительное время обитающих на определен­ной территории с относительно однородными усло­виями. Лес, луг, водоем, степь — примеры экоси­стем.

3. Автотрофный и гетеротрофный способы пи­тания организмов, получения ими энергии. Ха­рактер питания — основа связей между особями разных популяций в биогеоценозе. Использование автотрофами (в основном растениями) неорганиче­ских веществ и солнечной энергии, создание из них органических веществ. Использование гете-ротрофами (животными, грибами, большинством

бактерий) готовых органических веществ, синтези­рованных автотрофами, и заключенной в них энер­гии.

4. Организмы — производители органического вещества, потребители и разрушители — основ­ные звенья биогеоценоза. 1) Организмы-производи­тели — автотрофы, в основном растения, создаю­щие органические вещества из неорганических с использованием энергии света; 2) организмы-по­требители — гетеротрофы, питаются готовыми ор­ганическими веществами и используют заключен­ную в них энергию (животные, грибы, большинство бактерий); 3) организмы-разрушители — гетеро­трофы, питаются остатками растений и животных, разрушают органические вещества до неорганиче­ских (бактерии, грибы).

5. Взаимосвязь организмов — производителей, потребителей, разрушителей в биогеоценозе. Пи­щевые связи — основа круговорота веществ и пре­вращения энергии в биогеоценозе. Цепи питания — пути передачи вещества и энергии в биогеоценозе. Пример: растения —» растительноядное животное (заяц) —» хищник (волк). Звенья в цепи питания (трофические уровни): первое — растения, второе — растительноядные животные, третьи — хищники.

6. Растения — начальное звено цепей питания благодаря их способности создавать органические вещества из неорганических с использованием сол­нечной энергии. Разветвленность цепей питания: особи одного трофического уровня (производители) служат пищей для организмов нескольких видов другого трофического уровня (потребителей).

7. Саморегуляция в биогеоценозах — поддержа­ние численности особей каждого вида на определен­ном, относительно постоянном уровне. Саморегуля­ция — причина устойчивости биогеоценоза. Его за­висимость от разнообразия обитающих видов, многообразия цепей питания, полноты круговорота веществ и превращения энергии.

3. Надо учитывать, что наследование признаков, контролируемых генами, расположенными в Х-хро-мосоме, будет происходить иначе, чем контролируе­мых генами, находящимися в аутосомах. Например, наследование гена гемофилии связано с ЛГ-хромосо-мой, в которой он расположен. Доминантный ген Н обеспечивает свертываемость крови, а рецессивный ген h — несвертываемость. Если женщина имеет в клетках два гена hh, то у нее проявляется болезнь, если Hh — болезнь не проявляется, но она является носителем гена гемофилии. У мужчин гемофилия проявляется при наличии одного гена h, так как у него всего одна Х-хромосома.


Билет № 17

1. 1. Г. Мендель — основоположник генетики, ко­торая изучает наследственность и изменчивость ор­ганизмов, их материальные основы.

2. Открытие Г. Менделем правила единообра­зия, законов расщепления и независимого насле­дования. Проявление правила единообразия и за­кона расщепления во всех видах скрещивания, а закона независимого наследования — при дигиб-ридном и полигибридном скрещивании.

3. Закон независимого наследования — каждая пара признаков наследуется независимо от других пар и дает расщепление 3:1 по каждой паре (как и при моногибридном скрещивании). Пример: при скрещивании растений гороха с желтыми и гладки­ми семенами (доминантные признаки) с растения­ми с зелеными и морщинистыми семенами (рецес­сивные признаки) во втором поколении происходит расщепление в соотношении 3:1 (три части желтых и одна часть зеленых семян) и 3:1 (три части глад­ких и одна часть морщинистых семян). Расщепле­ние по одному признаку идет независимо от рас­щепления по другому.

4. Причины независимого наследования при­знаков — расположение одной пары генов (Аа) в одной паре гомологичных хромосом, а другой пары (ВЪ) — в другой паре гомологичных хромосом. По­ведение одной пары негомологичных хромосом в митозе, мейозе и при оплодотворении не зависит от другой пары. Пример: гены, определяющие цвет семян гороха, наследуются независимо от генов, определяющих форму семян.

2. 1. Дубрава — устойчивый биогеоценоз, существу­ет сотни лет, заселен многими видами растений (око­ло сотни) и животных (несколько тысяч), грибов, ли­шайников и др., длительное время занимает опреде­ленную территорию с относительно однородными абиотическими факторами (влажностью, температу­рой и др.).

2. Причины устойчивости дубравы — большое разнообразие видов, тесные связи между ними (пи­щевые, генетические), разнообразные приспособле­ния к совместному обитанию, сложившийся меха­низм саморегуляции — поддержания численности особей на относительно постоянном уровне.

3. Наличие в дубраве трех звеньев: организмов — производителей, потребителей и разрушителей ор­ганического вещества. Различный характер пита­ния, способов получения энергии организмами этих звеньев — основа пищевых связей, круговоро­та веществ и потока энергии. Живое население дуб равы — биотические факторы, факторы неживой природы — абиотические.

4. Организмы — производители дубравы. Мно­голетние древесные широколиственные и мелколи­ственные растения — основные производители ор­ганического вещества. Ярусное расположение рас­тений, наличие 4—5 ярусов — приспособленность к эффективному использованию света, влаги, тер­ритории.

5. Высокая продуктивность организмов-произ­водителей (растений) — причина заселения дубра­вы множеством видов животных от простейших до млекопитающих. Наибольшее разнообразие видов членистоногих в дубраве: растительноядных, хищ­ных, паразитов.

6. Особенности цепей питания дубравы — их разнообразие, большое число звеньев, разветвлен-ность (сети питания — один вид служит пищей для нескольких видов). Эффективное использование ор­ганического вещества и энергии, полный кругово­рот веществ.

7. Жуки-мертвоеды, кожееды, личинки падаль-ных мух, грибы, гнилостные бактерии — организ­мы-разрушители, расщепление ими отмерших ча­стей растений, остатков животных и продуктов их жизнедеятельности до минеральных веществ. Ис­пользование растениями в процессе почвенного пи­тания минеральных веществ.

8. Саморегуляция в дубраве — совместное су­ществование различных видов с разными спосо­бами питания. Численность особей каждого вида ограничивается определенным уровнем, а полного уничтожения их не происходит. Пример: зайцы, лоси, насекомые не уничтожают полностью рас­тения, которыми они питаются; лисы, волки огра­ничивают численность популяций зайцев, полевок.

9. Ярусное расположение растений, теневыносли­вость трав, ранневесеннее цветение луковичных рас­тений — примеры приспособленности организмов к биотическим и абиотическим факторам среды.

3. Надо приготовить микроскоп к работе: осветить поле зрения, с помощью винтов найти четкое изо­бражение, рассмотреть клетку, в которой ядро обо­соблено от цитоплазмы оболочкой, хромосомы име­ют вид тонких нитей и тесно переплетены.

Билет № 18

1. 1. Десятки и сотни тысяч генов в клетке — ос­нова формирования большого разнообразия при­знаков в организме. Несоответствие числа хромо­сом (единицы, десятки) числу генов (тысячи, сотни тысяч) — доказательство расположения в каждой хромосоме множества генов.


Информация о работе «Билеты по биологии 11 класс»
Раздел: Биология
Количество знаков с пробелами: 134680
Количество таблиц: 2
Количество изображений: 0

Похожие работы

Скачать
174152
0
0

... для роста, развития и размножения, а также воссоздание среды (Питания живыми организмами — условия самовоспроязводства биогеоценозов (экосистем). БИЛЕТ№19 ВОПОС 1. Моногибридное скрещивание. Одна из особенностей метода Менделя состояла в том, что он использовал для экспериментов чистые линии, то есть растения, в потомстве которых при самоопылении не наблюдалось разнообразия по изучаемому ...

Скачать
114648
0
0

... . Од­нако эти модификации не наследуются, потому что гены, отве­чающие за развитие растений, не меняются в ответ на измене­ния температуры, влажности, характера питания. Вывод, что признаки, приобретенные в течение жизни организмов, не на­следуются, сделал крупный немецкий биолог А. Вейсман. Иногда модификационная изменчивость называется ненаслед­ственной. Это верно в том смысле, что модификации ...

Скачать
26193
0
0

... . У одних это могут быть тысячи у других менее десяти. Чтобы установить причины колебания необходимо изучать биологию каждого вида и его врагов. Все виды приспособлены к обитанию с другими и контактами с ними. Эта возможность приобреталась на протяжении многих лет за счет эволюции. Билет №6 1.    агроценоз. Его отличия от о природного биогеоценоза. Круговорот веществ в агроценозе, пути ...

Скачать
8771
0
0

... Гигиена кровеносной системы. Бактерии. Особенности их строения и жизнедеятельности, роль в природе человека. Среди нескольких комнатных растений найти двудольное и описать признаки растений этого класса. Билет №9Пищеварение, роль пищеварительных желез в нем. Значение всасывания питательных веществ. Основные систематические категории растений и животных. Признаки вида. Среди микропрепаратов клеток ...

0 комментариев


Наверх