Войти на сайт

или
Регистрация

Навигация


Метод прогонки решения систем с трехдиагональными матрицами коэффициентов

6694
знака
1
таблица
0
изображений

Магнитогорский Государственный Технический Университет имени Г.И.Носова


Кафедра математики


Реферат

 

Тема: Метод прогонки решения систем с трехдиагональными

матрицами коэффициентов


Выполнил: студент группы ЭА-04-2

Романенко Н.А.

 

Проверил: Королева В.В.


Магнитогорск 2004


Часто возникает необходимость в решении линейных алгебраических систем, матрицы которых, являясь слабо заполненными, т.е. содержащими немного ненулевых элементов, имеют определённую структуру. Среди таких систем выделим системы с матрицами ленточной структуры, в которых ненулевые элементы располагаются на главной диагонали и на нескольких побочных диагоналях. Для решения систем с ленточными матрицами коэффициентов метод Гаусса можно трансформировать в более эффективные методы.

Рассмотрим наиболее простой случай ленточных систем, к которым, как увидим впоследствии, сводится решение задач сплайн-интерполяции функций, дискретизации краевых задач для дифференциальных уравнений методами конечных разностей, конечных элементов и др. А именно, будем искать решение такой системы, каждое уравнение которой связывает три “соседних” неизвестных:

bixi-1+cixi+dixi=ri (1)

где i=1,2,...,n; b1=0, dn=0. Такие уравнения называются трехточечными разностными уравнениями второго порядка. Система (1) имеет трёхдиагональную структуру, что хорошо видно из следующего, эквивалентного (1), векторно-матричного представления:

c1  d1 0 0 ... 0  0  0 x1 r1

b2  c2 d2 0 ... 0  0  0 x2 r2

0 b3  c3 d3 ... 0  0 0 x3   r3

. . . . ... . . . * ... = ...

0 0 0 0 ... bn-1cn-1 dn-1  xn-1 rn-1

0 0 0 0 ... 0 bn cnxn  rn

 

Как и в решении СЛАУ методом Гаусса, цель избавится от ненулевых элементов в поддиаганальной части матрицы системы, предположим, что существуют такие наборы чисел δi и λi (i=1,2,...,n), при которых

xi= δixi+1+ λi (2)

т.е. трехточечное уравнение второго порядка (1) преобразуется в двухточечное уравнение первого порядка (2). Уменьшим в связи (2) индекс на единицу и полученое выражение xi-1= δi-1xi+ λi-1 подставим в данное уравнение (1):

biδi-1 xi+ bi λi-1+ cixi+ dixi+1= ri

откуда

xi= -((di /( ci+ biδi-1)) xi-1+(ri - bi λi-1)/( ci - bi δi-1)).

Последнее равенство имеет вид (2) и будет точно с ним совпадать, иначе говоря, представление (2) будет иметь место, если при всех i=1,2,…,n выполняются рекуррентные соотношения

δi = - di /( ci+ biδi-1) , λ i=(ri - bi λi-1)/( ci - bi δi-1) (3)

Легко видеть, что, в силу условия b1=0, процесс вычисления δi, λi может быть начат со значений

δ1 = - d1/ c1 , λ1 = r1/ c1

и продолжен далее по формулам (3) последовательно при i=2,3,...,n, причем при i=n, в силу dn=0, получим δn=0.Следовательно, полагая в (2) i=n,будем иметь

xn = λn = (rn – bn λn-1)/( cn – bn δn-1)

(где λn-1 , δn-1 – уже известные с предыдущего шага числа). Далее по формулам (2) последовательно находятся xn-1 , xn-2 ,…, x1 при i=n-1, n-2,...,1 соответственно.

Таким образом, решение уравнений вида (1) описываем способом, называемым методом прогонки, сводится к вычислениям по трём простым формулам: нахождение так называемых прогоночных коэффициентов δi, λiпо формулам (3) при i=1,2,…,n (прямая прогонка) и затем неизвестных xi по формуле (2) при i=n-1, n-2,...,1 (обратная прогонка).

Для успешного применения метода прогонки нужно, чтобы в процессе вычислений не возникало ситуаций с делением на нуль, а при больших размерностях систем не должно быть строгого роста погрешностей округлений.

Будем называть прогонку корректной, если знаменатели прогоночных коэффициентов (3) не обращаются в нуль, и устойчивой, если |δi|<1 при всех i?{1,2,...,n }.

Приведем простые достаточные условия корректности и устойчивости прогонки, которые во многих приложениях метода автоматически выполняются.

Теорема

Пусть коэффициенты biи di уравнения (1) при i=2,3,...,n-1 отличны от нуля и пусть

|ci|>|bi|+|di| i=1,2,…,n. (4)

Тогда прогонка (3), (2) корректна и устойчива (т.е. сi+biδi-1≠0, |δi|<1).

Д о к а з а т е л ь с т в о. Воспользуемся методом математической индукции для установления обоих нужных неравенств одновременно.

При i=1, в силу (4), имеем:

|c1|>|d1|≥0

- неравенство нулю первой пары прогоночных коэффициентов, а так же

1|=|- d1/ c1|<1

Предположим, что знаменатель (i-1)-x прогоночных коэффициентов не равен нулю и что |δi-1|<1. Тогда, используя свойства модулей, условия теоремы и индукционные предположения, получаем:

i+biδi-1|≥|ci| - |biδi-1|>|bi|+|di| - |bi|*|δi-1|= |di|+|bi|(1 - | δi-1|)> |di|>0

а с учетом этого

i|=|- di/ сi+biδi-1|=|δi|/| сi+biδi-1|<|δi|/|δi|=1

Следовательно, сi+biδi-1 ≠0 и |δi|<1 при всех i?{1,2,...,n }, т.е. имеет место утверждаемая в данных условиях корректность и устойчивость прогонки. Теорема доказана.

Пусть А – матрица коэффициентов данной системы (1), удовлетворяющих условиям теоремы, и пусть

δ1= - d1/ c1 , δi=|- di/ ci+biδi-1 (i=2,3,...,n-1), δn=0

- прогоночные коэффициенты, определяемые первой из формул (3), а

i= сi+biδi-1 (i=2,3,...,n)

- знаменатели этих коэффициентов (отличные от нуля согласно утверждению теоремы). Непосредственной проверкой легко убедится, что имеет место представление A=LU, где

c1  0 0  0 ... 0 0 0

b2  ∆2 0 0 ... 0  0 0

L= 0 b3  ∆3  0 ... 0 0 0

…………………………

0  0  0  0 ... bn-1 n-1 0

0  0  0  0 ... 0 bn ∆n


1 -δ1 0 0 ... 0 0 0

0 1  δ2 0 ... 0 0 0

U= 0 0  1δ3 ... 0 0 0

…………………………

0 0 0 0  ... 0  1 -δn-1

0  0  0  0  ... 0 0 1

 

Единственное в силу утверждение теоремы LU-разложения матриц. Как видим, LU-разложение трехдиагональной матрицы А может быть выполнено очень простым алгоритмом, вычисляющем ∆i δi при возрастающих значениях i. При необходимости попутно может быть вычислен

n

det A = c1 ∏ ∆i .

i=2

В заключение этого пункта заметим, что, во-первых, имеются более слабые условия корректности и устойчивости прогонки, чем требуется в теореме условие строгого диагонального преобладания в матрице А. Во-вторых, применяется ряд других, отличных от рассмотрения нами правой прогонки, методов подобного типа, решающих как поставленную здесь задачу (1) для систем с трехдиагональными матрицами (левая прогонка, встречная прогонка, немонотонная, циклическая, ортогональная прогонки и т.д.), так и для более сложных систем с матрицами ленточной структуры или блочно-матричной структуры (например, матричная прогонка).


Список используемой литературы

В.М. Вержбитский «Численные методы. Линейная алгебра и нелинейные уравнения», Москава «Высшая школа 2000».


Информация о работе «Метод прогонки решения систем с трехдиагональными матрицами коэффициентов»
Раздел: Математика
Количество знаков с пробелами: 6694
Количество таблиц: 1
Количество изображений: 0

Похожие работы

Скачать
18618
0
16

... уравнений (2) сводится к последовательному решению двух следующих систем уравнений с треугольными матрицами коэффициентов L Y = B; (6) U X = Y (7) линейный алгебраический уравнение численный где Y =  - вектор вспомогательных переменных. Такой подход позволяет многократно решать системы линейных ...

Скачать
13057
0
5

... (19) где  - матрица системы,  - матрица правых частей, оценивается нормой: (20) Относительная погрешность оценивается по формуле: (21) где . 4. Итерационные методы решения систем линейных уравнений   Рассмотрим систему линейных уравнений, которая плохо решается методами Гаусса. Перепишем систему уравнений в виде: ...

Скачать
80996
0
98

... лежащие на главной и двух побочных диагоналях, равны нулю при та В общем случае системы линейных алгебраических уравнений с трехдиагональной матрицей имеют вид Для численного решения систем трехдиагональными матрицами применяется метод прогонки, который представляет собой вариант метода последовательного исключения неизвестных. Т.е. матрицу А можно записать Идея метода прогонки состоит ...

Скачать
5519
0
12

... неизвестных и матрица этой системы является трехдиагональной. Преобразуем уравнения (2.28): . (2.30) Введя обозначения получим , (i=0, 1,..., n-2). (2.31) Краевые условия по-прежнему запишем в виде . (2.32) Метод прогонки состоит в следующем. Разрешим уравнение (2.31) относительно : . (2.33) Предположим, что с помощью полной системы (2.31) из уравнения исключен член ...

0 комментариев


Наверх