Пытьев Ю.П.

Московский государственный университет, Москва, Россия

1. Введение

Хорошо известно, что изображения одной и той же сцены, полученные при различных условиях освещения и(или) измененных[1] оптических свойствах объектов могут отличаться радикально. Это обстоятельство порождает значительные трудности в прикладных задачах анализа и интерпретации изображений реальных сцен, в которых решение должно не зависеть от условий регистрации изображений. Речь идет, например, о задачах выделения неизвестного объекта на фоне известной местности, известного объекта на произвольном фоне при неконтролируемых условиях освещения, о задаче совмещения изображенний одной и той же сцены, полученных в различных спектральных диапазонах и т.д.

Методы морфологического анализа, разработанные более десяти лет тому назад, [1-5], для решения перечисленных задач, были в основном ориентированы для применения к черно-белым изображениям[2] и оказались достаточно эффективными, [5-11].

Между тем, по меньшей мере два обстоятельства указывают на целесообразность разработки морфологических методов анализа цветных изображений. Во-первых, в задаче обнаружения и выделения объекта последний, как правило, прежде всего цветом отличается от фона. Во-вторых, описание формы изображения в терминах цвета позволит практически устранить эффект теней и влияние неопределенности в пространственном распределении интенсивности спектрально однородного освещения.

2. Цвет и яркость спектозонального изображения.

Рассмотрим некоторые аспекты теории цвета так называемых многоспектральных (спектрозональных, [13]) изображений, аналогичной классической колориметрии [12]. Будем считать заданными n детекторов излучения со спектральными чувствительностями  j=1,2,...,n, где l(0,¥) - длина волны излучения. Их выходные сигналы, отвечающие потоку излучения со спектральной плотностью e(l)0, lÎ(0,¥), далее называемой излучением, образуют вектор , w(×)=. Определим суммарную спектральную чувствительность детекторов , lÎ(0,¥), и соответствующий суммарный сигнал  назовем яркостью излучения e(×). Вектор  назовем цветом излучения e(×). Если  цвет e(×) и само излучение назовем черным. Поскольку равенства  и  эквивалентны, равенство  имеет смысл и для черного цвета, причем в этом случае  - произвольный вектор, яркость оторого равна единице. Излучение e(×) назовем белым и его цвет обозначим  если отвечающие ему выходные сигналы всех детекторов одинаковы:

.

Векторы  , и  , , удобно считать элементами n-мерного линейного пространства . Векторы fe, соответствующие различным излучениям e(×), содержатся в конусе . Концы векторов  содержатся в множестве , где Ï - гиперплоскость .

Далее предполагается, что всякое излучение  , где E - выпуклый конус излучений, содержащий вместе с любыми излучениями  все их выпуклые комбинации (смеси)  Поэтому векторы  в  образуют выпуклый конус , а векторы .

Если то и их аддитивная смесь . Для нее

. (1)

Отсюда следует

Лемма 1. Яркость fe и цвет je любой аддитивной смеси e(×) излучений e1(×),...,em(×), m=1,2,... определяются яркостями и цветами слагаемых.

Подчеркнем, что равенство , означающее факт совпадения яркости и цвета излучений e(×) и , как правило, содержит сравнительно небольшую информацию об их относительном спектральном составе. Однако замена e(×) на  в любой аддитивной смеси излучений не изменит ни цвета, ни яркости последней.

Далее предполагается, что вектор w(×) таков, что в E можно указать базовые излучения , для которых векторы , j=1,...,n, линейно независимы. Поскольку цвет таких излучений непременно отличен от черного, их яркости будем считать единичными, , j=1,...,n. В таком случае излучение  характеризуется лишь цветом , j=1,...,n.

Для всякого излучения e(×) можно записать разложение

, (1*)

в котором  - координаты  в базисе ,

или, в виде выходных сигналов детекторов излучения, - , где , , - выходной сигнал i-го детектора, отвечающий j-ому излучению ej(×), i, j=1,...,n. Матрица  - стохастическая, поскольку ее матричные элементы как яркости базовых излучений  неотрицательны и , j=1,...,n. При этом яркость  и вектор цвета , , j=1,...,n, (конец которого лежит в Ï) определяются координатами aj и цветами излучений , j=1,...,n, и не зависят непосредственно от спектрального состава излучения e(×).

В ряде случаев белое излучение естественно определять исходя из базовых излучений, а не из выходных сигналов детекторов, считая белым всякое излучение, которому в (1*) отвечают равные координаты: .

Заметим, что слагаемые в (1*), у которых aj<0,[3] физически интерпретируются как соответствующие излучениям, "помещенным" в левую часть равенства (1*) с коэффициентами -aj>0: . В такой форме равенство (1*) представляет “баланс излучений”.

Определим в  скалярное произведение  и векторы , биортогонально сопряженные с : , i,j=1,...,n.

Лемма 2. В разложении (1*) , j=1,...,n, . Яркость , где , причем вектор y ортогонален гиперплоскости Ï, так как , i,j=1,...,n.

Что касается скалярного проиведения , то его естественно определять так, чтобы выходные сигналы детекторов  были координатами fe в некотором ортонормированном базисе . В этом базисе конус . Заметим, что для любых векторов  и, тем более, для , [4].

Пусть Х - поле зрения, например, ограниченная область на плоскости R2, или на сетке ,  спектральная чувствительность j-го детектора излучения, расположенного в точке  ;  - излучение, попадающее в точку . Изображением назовем векторнозначную функцию

(2**)

Точнее, пусть Х - поле зрения, (Х, С, m) - измеримое пространство Х с мерой m, C - s-алгебра подмножеств X. Цветное (спектрозональное) изображение определим равенством

, (2)

в котором почти для всех , , - m-измеримые функции на поле зрения X, такие, что

 .

Цветные изображения образуют подкласс функций  лебеговского класса  функций . Класс цветных изображений обозначим LE,n.

Впрочем, для упрощения терминологии далее любой элемент  называется цветным изображением, а условие

  (2*)

условием физичности изображений f(×).

Если f(×) - цветное изображение (2), то , как нетрудно проверить, - черно-белое изображение [2], т.е. , . Изображение , назовем черно-белым вариантом цветного изображения f(×), а цветное изображение , f(x)0, xÎX - цветом изображения f(×). В точках множества Â={xÎX: f(x)=0} черного цвета j(x), xÎÂ, - произвольные векторы из , удовлетворяющие условию: яркость j(x)=1. Черно-белым вариантом цветного изображения f(×) будем также называть цветное изображение b(×), имеющее в каждой точке Х ту же яркость, что и f(×), b(x)=f(x), xÎX, и белый цвет, b(x)=b(x)/b(x)=b, xÎX.


Информация о работе «Морфологический анализ цветных (спектрозональных) изображений»
Раздел: Математика
Количество знаков с пробелами: 52972
Количество таблиц: 0
Количество изображений: 7

Похожие работы

Скачать
31041
0
2

... непосредственно в лесу, анализируя полученные в натуре таксационные характеристики и сопостав­ляя их с изображением всей площади таксационного выдела на аэрофотоснимках. ИНВЕНТАРИЗАЦИЯ ЛЕСОВ НА ОСНОВЕ СОЧЕТАНИЯ НАЗЕМНОЙ ТАКСАЦИИ С КАМЕРАЛЬНЫМ ДЕШИФРИРОВАНИЕМ АЭРОФОТОСНИМКОВ Метод предусматривает частичную замену наземной такса­ции камеральным дешифрированием ...

Скачать
258002
3
0

... приходит, с карты начинается и картой кончается». «Карта... способствует выявлению географических закономерностей». «Карта является как бы вторым языком географии...». По К.А. Салищеву, картографический метод исследования заключается в использовании разнообразных карт для описания, анализа и познания явлений, для получения новых знаний и характеристик, изучения процессов развития, установления ...

Скачать
40601
0
0

... возраста определяют (по снимкам высокого разрешения) на основе микроструктуры полога насаждений и их статистических характеристик; остальные таксационные показатели - расчетным путем на основе их взаимосвязей. По космическим снимкам с разрешением на местности 10 м и лучше после определения преобладающей и составляющих пород, типа леса или группы типов леса и класса бонитета, дешифрируют группу ...

0 комментариев


Наверх