3. Форма цветного изображения.

Понятие формы изображения призвано охарактеризовать форму изображенных объектов в терминах характерности изображений, инвариантных относительно определенного класса преобразований изображения, моделирующих меняющиеся условия его регистрации. Например, довольно часто может меняться освещение сцены, в частности, при практически неизменном спектральном составе может радикально изменяться распределение интенсивности освещения сцены. Такие изменения освещения в формуле (2**) выражаются преобразованием , в котором множитель k(x) модулирует яркость изображения  в каждой точке при неизменном распределении цвета. При этом в каждой точке у вектора f(x) может измениться длина, но направление останется неизменным.

Нередко изменение распределения интенсивности освещения сопровождается значительным изменением и его спектрального состава, но - пространственно однородным, одним и тем же в пределах всей изображаемой сцены. Поскольку между спектром излучения e и цветом j нет взаимно однозначного соответствия, модель сопутствующего преобразования изображения f(x) в терминах преобразования его цвета j(×). Для этого определим отображение A(×):, ставящее в соответствие каждому вектору цвета подмножество поля зрения в точках которого изображение , имеет постоянный цвет .

Пусть при рассматриваемом изменении освещения и, соответственно, ; предлагаемая модель преобразования изображения состоит в том, что цвет  преобразованного изображения должен быть также постоянным на каждом множестве A(j), хотя, вообще говоря, - другим, отличным от j. Характекрным в данном случае является тот факт, что равенство  влечет . Если  - самое детальное изображение сцены, то, вообще говоря, на различных множествах A(j¢) и A(j) цвет изображения  может оказаться одинаковым[5].

Как правило, следует учитывать непостоянство оптических характеристик сцены и т.д. Во всех случаях форма изображения должна быть инвариантна относительно преобразования из выделенного класса и, более того, должна определять изображение с точностью до произвольного преобразования из этого класса.

Для определения понятия формы цветного изображения f(×) на  удобно ввести частичный порядок p , т.е. бинарное отношение, удовлетворяющее условиям: 1), 2) , , то , ; отношение p должно быть согласованным с определением цветного изображения (с условием физичности), а именно, , если . Отношение p интерпретируется аналогично тому, как это принято в черно-белой морфологии[2], а именно,  означает, что изображения f(×) и g(×) сравнимы по форме, причем форма  g(×) не сложнее, чем форма f(×). Если  и , то f(×) и g(×) назовем совпадающими по форме (изоморфными), f(×) ~ g(×). Например, если f(×) и g(×) - изображения одной и той же сцены, то g(×), грубо говоря, характеризует форму изображенных объектов не точнее (подробнее, детальнее), чем f (×), если .

В рассматриваемом выше примере преобразования изображений , если между множествами A(j), и A¢(j¢), существует взаимно-однозначное соответствие, т.е., если существует функция , такая, что A¢(j¢(j))= A(j),, причем, если . В этом случае равенства  и  эквивалентны,  и  изоморфны и одинаково детально характеризуют сцену, хотя и в разных цветах.

Если же  не взаимно однозначно, то A¢(j¢)=U A(j) и . В этом случае равенство  влечет  (но не эквивалентно) ,  передает, вообще говоря, не все детали сцены, представленные в .

Пусть, скажем, g(×) - черно-белый вариант f(×), т.е. g(x)=f(x) и g(x)/g(x)=b, xÎX. Если преобразование  - следствие изменившихся условий регистрации изображения, то, естественно, . Аналогично, если f(×), g(×) - изображения одной и той же сцены, но в g(×), вследствие неисправности выходные сигналы некоторых датчиков равны нулю, то . Пусть F - некоторая полугруппа преобразований , тогда для любого преобразования FÎF , поскольку, если некоторые детали формы объекта не отражены в изображении f(×), то они, тем более, не будут отражены в g(×).

Формой  изображения f(×) назовем множество изображений , форма которых не сложнее, чем форма f`(×), и их пределов в (черта символизирует замыкание в ). Формой изображения f(×) в широком смысле назовем минимальное линейное подпространство , содержащее . Если считать, что  для любого изображения , то это будет означать, что отношение p непрерывно относительно сходимости в  в том смысле, что .

Рассмотрим теперь более подробно понятие формы для некоторых характерных классов изображений и их преобразований.


Информация о работе «Морфологический анализ цветных (спектрозональных) изображений»
Раздел: Математика
Количество знаков с пробелами: 52972
Количество таблиц: 0
Количество изображений: 7

Похожие работы

Скачать
31041
0
2

... непосредственно в лесу, анализируя полученные в натуре таксационные характеристики и сопостав­ляя их с изображением всей площади таксационного выдела на аэрофотоснимках. ИНВЕНТАРИЗАЦИЯ ЛЕСОВ НА ОСНОВЕ СОЧЕТАНИЯ НАЗЕМНОЙ ТАКСАЦИИ С КАМЕРАЛЬНЫМ ДЕШИФРИРОВАНИЕМ АЭРОФОТОСНИМКОВ Метод предусматривает частичную замену наземной такса­ции камеральным дешифрированием ...

Скачать
258002
3
0

... приходит, с карты начинается и картой кончается». «Карта... способствует выявлению географических закономерностей». «Карта является как бы вторым языком географии...». По К.А. Салищеву, картографический метод исследования заключается в использовании разнообразных карт для описания, анализа и познания явлений, для получения новых знаний и характеристик, изучения процессов развития, установления ...

Скачать
40601
0
0

... возраста определяют (по снимкам высокого разрешения) на основе микроструктуры полога насаждений и их статистических характеристик; остальные таксационные показатели - расчетным путем на основе их взаимосвязей. По космическим снимкам с разрешением на местности 10 м и лучше после определения преобладающей и составляющих пород, типа леса или группы типов леса и класса бонитета, дешифрируют группу ...

0 комментариев


Наверх