3. Обзор архитектуры семейства Virtex

Основными особенностями архитектуры кристаллов семейства Virtex являются гибкость и регулярность. Кристаллы состоят из матрицы КЛБ (Конфигурируемый Логический Блок), которая окружена программируе­мыми блоками ввода-вывода (БВВ). Все соединения между основными элементами (КЛБ, БВВ) осуществляются с помощью набора иерархичес­ких высокоскоростных программируемых трассировочных ресурсов. Изобилие таких ресурсов позволяет реализовывать на кристалле семейст­ва Virtex даже самые громоздкие и сложные проекты.

Кристаллы семейства Virtex производятся на основе статического ОЗУ (Static Random Access Memory — SRAM), поэтому функционирование кри­сталлов определяется загружаемыми во внутренние ячейки памяти конфи­гурационными данными. Конфигурационные данные могут загружаться в кристалл несколькими способами. В ведущем последовательном режиме (Master Serial) загрузка осуществляется из внешнего ОЗУ и полностью уп­равляется самой FPGA Virtex. В других режимах управление загрузкой осу­ществляется внешними устройствами (режимы Select-MAP™, подчинен­ный-последовательный (Slave Serial и JTAG).

Конфигурационные данные создаются пользователем при помощи программного обеспечения проектирования Xilinx Foundation и Alliance Series. Программное обеспечение включает в себя схемный и текстовый ввод, моделирование, автоматическое и ручное размещение и трассировку, создание, загрузку и верификацию загрузочных данных.

3.1. Быстродействие

Кристаллы Virtex обеспечивают более высокую производительность, чем предыдущие поколения FPGA. Проекты могут работать на системных частотах до 200 МГц, включая блоки ввода-вывода. Блоки ввода-вывода Virtex полностью соответствуют спецификациям PCI-шины, поэтому кри­сталл позволяет реализовывать интерфейсные схемы, работающие на час­тоте 33 МГц или 66 МГц. В дополнение к этому кристаллы Virtex удовле­творяют требованию «hot-swap» для Compact PCI.

К настоящему времени кристаллы полностью протестированы на «эта­лонных» схемах. На основе тестов выявлено, что хотя производительность сильно зависит от конкретного проекта, большинство проектов работают на частотах превышающих 100 МГц и могут достигать системных частот до 200 МГц. В Табл. 2 представлены производительности некоторых стандартных функций, реализованных на кристаллах с градацией быстродействия '6'.

В отличие от предыдущих семейств ПЛИС фирмы «Xilinx», в сериях Virtex™ и Spartan™ градация по быстродействию обозначается классом, а не задержкой на логическую ячейку. Соответственно, в семействах Virtex™ и Spartan™ чем больше класс, тем выше быстродействие.

 

4. Описание архитектуры

 

4.1. Матрица Virtex

Программируемая пользователем вентильная матрицу серии Virtex пока­зана на Рис. I. Соединение между КЛБ осуществляется с помощью главных трассировочных матриц — ГТМ. ГТМ — это матрица программируемых транзисторных двунаправленных переключателей, расположенных на пере­сечении горизонтальных и вертикальных линий связи. Каждый КЛБ окру­жен локальными линиями связи (VersaBlock™), которые позволяют осуще­ствить соединения с матрицей ГТМ.

Таблица 2. Производительность стандартных функций Virtex-6

Функция Разрядность [бит] Производительность
Внутрисистемная производительность
Сумматор 16 5.0 нс
64 7.2 нс
Конвейерный умножитель 8х8 5.1 нс
16х16 6.0 нс
Декодер адреса 16 4.4 нс
64 6.4 нс
Мультиплексор 16:1 5.4 нс
Схема контроля по четности 9 4.1 нс
18 5.0 нс
36 6.9 нс
Системная производительность
Стандарт HSTL Class IV 200МГц
Стандарт LVTTL 180МГц
DLL Блоки ввода-вывода (БВВ) DLL
Блоки ввода-вывода (БВВ) Versa Ring Блоки ввода-вывода (БВВ)
Versa Ring Блочная память Матрица КЛБ Блочная память Versa Ring
Versa Ring
DLL Блоки ввода-вывода (БВВ) DLL

Рис. 1. Структура архитектуры Virtex.

Интерфейс ввода-вывода VersaRing создает дополнительные трассиро­вочные ресурсы по периферии кристалла. Эти трассы улучшают общую «трассируемость» устройства и возможности трассировки после закрепле­ния электрических цепей к конкретным контактам.

Архитектура Virtex также включает следующие элементы, которые со­единяются с матрицей ГТМ:

• Специальные блоки памяти (BRAMs) размером 4096 бит каждый.

• Четыре модуля автоподстройки задержек (DLL), предназначенных для компенсации задержек тактовых сигналов, а также деления, умножения и сдвига фазы тактовых частот.

• Буферы с тремя состояниями (BUFT), которые расположены вблизи каждого КЛБ и управляют горизонтальными сегментированными трассами.

Коды, записанные в ячейки статической памяти, управляют настройкой логических элементов и коммутаторами трасс, осуществляющих соединения в схеме. Эти коды загружаются в ячейки после включения пи­тания и могут перезагружаться в процессе работы, если необходимо изме­нить реализуемые микросхемой функции.

 


Информация о работе «ПЛИС Xilinx семейства Virtex™»
Раздел: Радиоэлектроника
Количество знаков с пробелами: 66085
Количество таблиц: 18
Количество изображений: 0

Похожие работы

Скачать
23688
7
19

... значительно снизить их себестоимость. До недавнего времени, несмотря на все достоинства ПЛИС Xilinx, существовало обстоятельство сдерживающее их применение (особенно недорогих кристаллов при разработке несерийных устройств) — необходимость дополнительных затрат на приобретение пакета программных средств проектирования и программирования. Чтобы устранить это препятствие, фирма Xilinx предоставила ...

Скачать
44493
3
33

... диаграмм с сохранением результатов в стандартном формате VCD (Value Change Dump), воспринимаемом всеми системами работы с временными диаграммами. [1] 2.МЕТОД ПРОЕКТИРОВАНИЯ УСТРОЙСТВ ФИЛЬТРАЦИИ ПО РАБОЧИМ ПАРАМЕТРАМ Методика проектирования фильтров по рабочим параметрам основана на нахождении значений элементов, нармированных по частоте и сопротивлению нагрузки, путём аппроксимации или с ...

Скачать
138361
13
23

... программирование микроконтроллера, как инструмента накопления данных и управления ресурсами, с учётом необходимой и достаточной степени доступа к конечной аппаратуре. Модуль накопления для задач многомерной мессбауэровской спектрометрии спроектирован с учётом следующих условий: -  Синхронизация накопителя с системой доплеровской модуляции осуществляется внешними тактовыми импульсами “старт” и ...

0 комментариев


Наверх