4.2.1. Ввод сигнала
Входной сигнал БВВ может быть протрассирован либо непосредственно к блокам внутренней логики, либо через входной триггер.
Кроме того, между выходом буфера и D-входом триггера может быть подключен элемент задержки, исключающий время удержания для случая контакт-контакт. Данная задержка согласована с внутренней задержкой распределения сигнала тактирования FPGA, что гарантирует нулевое время удержания для распределения сигналов контакт-контакт.
Каждый входной буфер может быть сконфигурирован таким образом, чтобы удовлетворять одному из низковольтных сигнальных стандартов, поддерживаемых устройством. В некоторых из этих стандартов входной буфер использует напряжение порогового уровня (), формируемое пользователем. Использование напряжений позволяет ввести в устройство принудительные опорные величины для различных, близких по используемым логическим уровням стандартов (см. также «Банки ввода-вывода»).
К каждому входу после окончания процесса конфигурирования могут быть, по выбору, подключены внутренние резисторы (либо pull-up, либо pull-down). Сопротивление этих резисторов лежит в пределах 50... 150 кОм.
4.2.2. Вывод сигнала
Выходной сигнал проходит через буфер с тремя состояниями, выход которого соединен непосредственно с выводом микросхемы. Сигнал может быть протрассирован на вход буфера с тремя состояниями, либо непосредственно от внутренней логической структуры, либо через выходной триггер блока ввода-вывода.
Управление буфером с тремя состояниями также может осуществляться либо непосредственно от внутренней логической структуры, либо через специальный триггер БВВ, который позволяет создать синхронное управление сигналом разрешения и запрещения для буфера с тремя состояниями. Каждый такой выходной каскад рассчитан на втекающий ток до 48 мА и вытекающий ток до 24 мА. Программирование мощности и скорости нарастания сигнала выходного каскада позволяет минимизировать переходные процессы в шинах.
Для большинства сигнальных стандартов выходной уровень логической единицы зависит от приложенного извне напряжения . Использование напряжения позволяет ввести в устройство принудительные опорные величины для различных, близких по используемым логическим уровням стандартов (см. также «Банки ввода-вывода»).
По выбору, к каждому выходу может быть подключена схема «week-keeper». Если данная цепь активирована (пользователем на этапе создания схемы), то она следит за напряжением на контакте микросхемы и создает слабую нагрузку для входного сигнала, подключенную либо к «земле» (если на входе уровень логического нуля), либо к источнику питания (если на входе уровень логической единицы). Если контакт подключен к нескольким источникам сигнала, эта цепь удерживает уровень входного сигнала в его последнем состоянии, при условии, что все источники были переведены в состояние с высоким импедансом. Поддержание таким путем одного из допустимых логических уровней позволяет ликвидировать неопределенность уровня шины.
Так как схема «week-keeper» использует входной буфер для слежения за входным уровнем, то необходимо использовать подходящее значение напряжения , если выбранный сигнальный стандарт требует этого. Подключение данного напряжения должно удовлетворять требованиям правил разбиения на банки.
4.2.3. Банки ввода-вывода
Некоторые из описанных выше стандартов требуют подключения напряжения и/или . Эти внешние напряжения подключаются к контактам микросхемы, которые функционируют группами, называемыми банками.
Как показано на Рис. 3, каждая сторона кристалла микросхемы разделена на два банка. Каждый банк имеет несколько контактов , но все они должны быть подключены к одному и тому же напряжению. Это напряжение определяется выбранным для данного банка\стандартом выходных сигналов.
Рис. 3. Банки ввода-вывода Virtex
Стандарты для выходных сигналов конкретного банка могут быть различными только в том случае, если они используют одинаковое значение напряжения . Совместимые стандарты показаны в Табл. 4. GTL и GTL+ присутствуют везде, поскольку их выходы с открытым стоком не зависят от значения .
Таблица 4. Выходные совместимые стандарты.
Совместимые стандарты | |
3.3 В | PCI, LVTTL, SSTL3 I, SSTL3 II, CTT, AGP, GTL, GTL+ |
2.5 В | SSTL2 I, SSTL2 II, LVCMOS2, GTL, GTL+ |
1.5 В | HSTL I, HSTL III, HSTL IV, GTL, GTL+ |
Некоторые сигнальные стандарты требуют подачи соответствующих пороговых напряжений на входные каскады. При этом определенные БВВ автоматически конфигурируются как входы, соответствующие напряжению . Приблизительно один контакт из шести в каждом банке может выполнять эту роль.
Контакты в пределах одного банка внутренне между собой соединены, следовательно, только одно значение напряжения может быть использовано в рамках одного банка. Для правильной работы все контакты одного банка должны быть подсоединены к внешнему источнику напряжения.
В пределах одного банка можно одновременно использовать входы, которые требуют напряжения и входы, которые этого не требуют. В то же время, только одно значение напряжения может быть использовано в рамках одного банка. Входные буферы, которые используют , не совместимы с сигналами 5-В стандартов.
Контакты и для каждого банка приведены в таблицах и диаграммах под конкретный корпус и кристалл. На диаграммах также показано, к какому банку относится конкретный контакт ввода-вывода.
В рамках конкретного типа корпуса микросхемы число контактов и может меняться в зависимости от емкости кристалла. Чем больше кристалл по логической емкости, тем большее число контактов ввода-вывода преобразовано в контакты типа . Поскольку существует максимальный набор контактов для меньших кристаллов, имеется возможность проектирования печатной платы, позволяющей также использовать на ней и большие кристаллы с таким же типом корпуса. Все контакты , предполагаемые к использованию для больших кристаллов, при этом должны быть подсоединены к напряжению и не должны использоваться как контакты ввода-вывода.
В меньших кристаллах некоторые из контактов , используемые в больших кристаллах, не соединены внутри корпуса. Эти не присоединенные контакты могут быть оставлены не присоединенными вне микросхемы или быть подключены к напряжению при необходимости обеспечения совместимости разрабатываемой печатной платы с большими кристаллами.
В корпусах типа TQ-144 и PQ-240/HQ-240 все контакты соединены вместе внутри микросхемы и, следовательно, ко всем из них должно быть подключено одно и то же напряжение . В корпусе CS-144 пары банков, расположенные на одной стороне, внутренне соединены, обеспечивая, таким образом, возможность выбора только четырех возможных значений напряжения для . Контакты остаются внутренне соединенными в рамках каждого из восьми банков и могут использоваться, как было описано выше.
... значительно снизить их себестоимость. До недавнего времени, несмотря на все достоинства ПЛИС Xilinx, существовало обстоятельство сдерживающее их применение (особенно недорогих кристаллов при разработке несерийных устройств) — необходимость дополнительных затрат на приобретение пакета программных средств проектирования и программирования. Чтобы устранить это препятствие, фирма Xilinx предоставила ...
... диаграмм с сохранением результатов в стандартном формате VCD (Value Change Dump), воспринимаемом всеми системами работы с временными диаграммами. [1] 2.МЕТОД ПРОЕКТИРОВАНИЯ УСТРОЙСТВ ФИЛЬТРАЦИИ ПО РАБОЧИМ ПАРАМЕТРАМ Методика проектирования фильтров по рабочим параметрам основана на нахождении значений элементов, нармированных по частоте и сопротивлению нагрузки, путём аппроксимации или с ...
... программирование микроконтроллера, как инструмента накопления данных и управления ресурсами, с учётом необходимой и достаточной степени доступа к конечной аппаратуре. Модуль накопления для задач многомерной мессбауэровской спектрометрии спроектирован с учётом следующих условий: - Синхронизация накопителя с системой доплеровской модуляции осуществляется внешними тактовыми импульсами “старт” и ...
0 комментариев