6.1.5 Эргономика и техническая эстетика

Конструкция рабочего места и взаимное расположение всех его элементов (сиденье, органы управления, средства отображения информации) должны соответствовать антропометрическим, физиологическим и психофизиологическим требованиям, а также характеру работы.

Размещение индикаторов и панелей управления производится согласно принципам:

·                     функциональной организации;

·                     по значимости; приборы сгруппированы в зависимости от того, насколько решающими они являются для выполнения группы операций;

·                     частоты использования.

Индикаторы занимают центральную часть. Все это соответствует требованиям ГОСТ 12.2.032-78; ГОСТ 12.2.033-78, ГОСТ 12.2.049-80.

Конструкцией рабочего места обеспечено оптимальное положение работающего, выполнение трудовых операций в пределах зоны досягаемости, размещение органов управления таким образом, чтобы при работе двумя руками не было их перекрещивания.

6.1.6 Электробезопасность

Исключительно большое значение, для электробезопасности имеет правильная организация обслуживания действующих электроустановок, проведения ремонтных, монтажных и профилактических работ. При этом под правильной организацией понимается строгое выполнение ряда организационных и технических мероприятий и средств.

Помещение относится к классу без повышенной опасности, так как нет условий, создающих повышенную опасность (полы покрыты изолирующим материалом, температура в помещении не превышает 25оС).

В помещении используется электрическое оборудование, принадлежащее к I классу Электротехнических условий по ГОСТ 12.1.013-79.ССБТ. Электробезопасность. Общие требования, то есть изделия, имеющие, по крайней мере, рабочую изоляцию и элемент для заземления. Все установки работают под напряжением 220 В переменного тока.

В помещении приняты меры безопасности при эксплуатации электроустановок. Обеспечена недоступность токоведущих частей для случайного прикосновения (все приборы находятся в корпусах, все панели заблокированы). Осуществляются организационные мероприятия. Это инструктаж по технике безопасности на рабочих местах, периодическая проверка качества заземления и сопротивления изоляции. Кроме того применено зануление, расчет которого приведен далее.

6.2 Расчет зануления

Опасность поражения током при прикосновении к корпусу и другим нетоковедущим металлическим частям электрооборудования, оказавшимся под напряжением вследствие замыкания на корпус и по другим причинам, является основной причиной получения персоналом травм. Эта опасность может быть устранена быстрым отключением поврежденной установки от питающей сети и вместе с тем снижения напряжения корпуса относительно земли. Для этой цели служит зануление.

Зануление - преднамеренное электрическое соединение с нулевым защитным проводником металлических нетоковедущих частей, которые могут оказаться под напряжением.

Нулевой защитный проводник – это проводник, соединяющий зануляемые части с глухозаземленной нейтральной точкой источника тока или ее эквивалентом. Эквивалентом нейтральной точки источника тока могут быть: средняя точка источника постоянного тока, заземленный вывод источника однофазного тока, искусственная нейтральная точка сети, созданная с помощью трансформаторов, резисторов и т. п.

Принцип действия зануления - превращение замыкания на корпус в однофазное короткое замыкание (т.е. между фазным и нулевым защитным проводниками) с целью вызвать большой ток, способный обеспечить срабатывание защиты и тем самым автоматически отключить поврежденную установку от питающей сети.

Основные требования, предъявляемые к занулению:

·      проводник должен иметь проводимость не менее 50 % от проводимости фазного провода;

·      повторные заземлители должны располагаться через каждые 250 метров, а также находится на концах линии и ответвлений длинной более 200 метров;

·      сопротивление заземления нейтрали (R0) должно быть не более 4 Ом (лишь для источников небольшой мощности до 100 кВА сопротивление нейтрали может составлять 10 Ом );

·      сопротивление заземления каждого из повторных заземлителей (Rп) должно быть не более 10 Ом, а в сетях, в которых R0 допускается, оно может составлять 30 Ом при условии, что число повторных заземлителей в этой сети не менее трех;

·      ток короткого замыкания Iк должен в три раза превышать номинальный ток ближайшей плавкой вставки предохранителя или номинальный ток расцепителя автоматического выключателя;

·      в одной и той же сети запрещается одновременно выполнять защитное заземление и зануление различных корпусов. Одновременное заземление и зануление одного оборудования не представляет опасности и допускается.

 

Рисунок 6.2 - Схема зануления оборудования.

Целью расчета зануления является определение условий, при которых оно быстро отключает поврежденную установку от сети, выбор сечения фазного и нулевого проводника, выбор устройства защиты, расчет повторного заземления нейтрали.

Автомат защиты размещается в распределительном щите. Схема зануления рабочих мест приведена на рисунке 6.2. Цифрами обозначены :

1 - распределительный щит;

2 - нейтраль источника тока;

3 - защитный нулевой проводник;

4 - повторное заземление нейтрали;

5 - рабочие места.

При замыкании фазы на зануленный корпус электроустановка автоматически отключится, если значение тока однофазного короткого замыкания Iк, А, удовлетворяет условию :

Iк ≥ к * Iном ,

где: Iк - номинальный ток плавкой вставки предохранителя или ток срабатывания автоматического выключателя, А;

к - коэффициент кратности тока.

Для автоматов с номинальным током до 100 А кратность тока должна быть не менее 1,4.

Определим ток срабатывания автомата защиты. Предполагаем, что суммарная потребляемая мощность измерительной аппаратурой, приборами освещения и другими установками и приспособлениями не превышает 6 кВт. Тогда потребляемый ток :

Iпот = 6000 / 220 = 27,3 А ; (6.1)

Ток срабатывания автомата защиты должен быть больше, чем потребляемый. Автоматы, выпускаемые промышленностью рассчитаны на стандартный ряд номинальных токов срабатывания. Большее ближайшее значение из этого ряда составляет 30 А. Исходя из этого выберем автомат защиты типа .

Определим ток короткого замыкания:

 ; (6.2)

где Uф - напряжение сети ; Rф и Rн - активные, а Хф и Хн- внутренние индуктивные сопротивления фазного и защитного нулевого проводников соответственно ; Хп - сопротивление взаимоиндукции петли фаза - ноль.

Для медных и алюминиевых проводов можно пренебречь Хф и Хн. Также для применяемого кабеля можно пренебречь величиной Хп. С учетом сделанных допущений, а также формулы (6.1) :

 ; (6.3)

Полная проводимость нулевого защитного провода согласно сделанных ранее замечаний :

Rн ≤ 2 * Rф ; (6.4)

 

Пусть Rн = 1.5*Rф , тогда формулу (3) запишем следующим образом:

 (6.5)

В справочных данных для трансформатора мощностью 25 кВт при схеме соединения обмоток типа «звезда» и напряжением 380/220 В полное сопротивление трансформатора ZТ = 3,11 Ом.

Определим сопротивление фазного провода Rф :

 ; (6.6)

Rф = 2,93 Ом.

Определим сопротивление защитного провода Rн = Rф .

Выберем сечение проводов. При наибольшей длительно допустимой нагрузке для медных проводов с резиновой изоляцией 30 А (при температуре окружающей среды 250С ) сечение составляет 2,5 мм2 .Сечение алюминиевых проводов при тех же условиях - 4 мм2.

Проведем расчет поверхностных заземлителей нейтрали. Согласно ПУЭ сопротивление заземления нейтрали трансформатора при напряжении 380/220 В не должно превышать 4 Ом. Сопротивление каждого из повторных заземлителей должно быть не более 10 Ом.

Повторные заземлители расположены на воздушных линиях через каждые 250 м. Рассмотрим два варианта заземления :


Информация о работе «Устройство измерения отношения двух напряжений»
Раздел: Радиоэлектроника
Количество знаков с пробелами: 83278
Количество таблиц: 20
Количество изображений: 0

Похожие работы

Скачать
104677
15
32

... с полезным сигналом помехам.. Итак, ЦИП наиболее полно удовлетворяют основным требованиям предъявляемым в настоящее время к измерительной аппаратуре, — высокая точность и быстродействие, автоматизация процессов измерения и обработки информации. Обобщенная структурная схема ЦИП показана на рис.25 Рис.25. Обобщенная структурная схема ЦИП В цифровом приборе измеряемая величина х ...

Скачать
91544
61
24

... может быть определена в результате решения матричного уравнения Y = 2(K - Ko ) , (16) где -1 - знак обращения матриц К и Ко. 3.4  Методика измерения двух- и четырехполюсных радиоэлементов Для случая двухполюсника n = 1  (17) имеем i = 1; j = 0.  (18) Очевидно, что при условиях (17) - (18) имеем: 1) коэффициенты матриц Ко и К с ...

Скачать
30822
0
0

... , внешнее магнитное поле, частота измеряемого переменного тока. Электромагнитные приборы благодаря простоте, дешевизне и надежности широко применяют для измерения токов и напряжений в сильноточных цепях постоянного и переменного тока промышленной частоты (50 и 400 Гц). Большинство электромагнитных амерметров и вольтметров выпускают в виде щитовых приборов различных класса 1,5 и 2,5. Имеются ...

Скачать
179075
32
127

... (от передвижения источников загрязнения) 1180,48 Всего за год: 211845,25 10. Совершенствование системы электроснабжения подземных потребителей шахты Расчет схемы электроснабжения ЦПП до участка и выбор фазокомпенсирующих устройств Основными задачами эксплуатации современных систем электроснабжения горных предприятий являются правильное определение электриче­ ...

0 комментариев


Наверх