1. Заземлители расположены в черноземе.
2. Заземлители расположены в глинистой почве.
Соответственные расчетные удельные сопротивления на черноземе r1=200 Ом*м, на грунте r2 =40 Ом * м.
В качестве заземлителей применим трубчатые вертикальные электроды диаметром 50 мм и длинной 2,5 м, расположенные на глубине 0,7 м.
Определим сопротивление растекания тока одного вертикального стержневого электрода:
; (6.7)
где l и d - длинна и диаметр электрода соответственно, м ;
t - глубина заложения середины электрода от поверхности земли, м ;
r - расчетное удельное сопротивление грунта, Ом*м.
1. Для чернозема Rc1 = 47,1 Ом.
2. Для грунта Rc1 = 9,4 Ом.
По рассчитанным данным можно сделать вывод, что для обеспечения качественного заземления на грунте достаточно одного заземленного электрода, в то время как на глинистой почве необходимы несколько электродов, соединенные стальной полосой сечением 4х12 мм и длинной 2,5 м. Определим сопротивление растекания тока для полосы :
; (6.8)
где L - длинна полосы, м;
b - ширина полосы, м;
t - глубина заложения полосы, м.
Rп = 76 Ом
Определим общее сопротивление заземляющего устройства расположенного на глинистой почве:
; (6.9)
где hс и hн - коэффициенты экранирования, приведенные в [10].
Rз = 9,1 Ом.
Таким образом, чтобы обеспечить требуемое сопротивление повторных заземлителей не более 10 Ом необходимо применить на глинистой почве один вертикальный электрод и шесть вертикальных электродов, соединенных стальной полосой при черноземе. Заземлители выполнены из стальных труб длиной 2,5 м, диаметром 50 мм и вкопаны на глубину 0.7 м.
6.3 - Охрана окружающей среды
В наш век научно технической революции, загрязнение окружающей среды становится важной проблемой для мирового сообщества. Основным источником загрязнения атмосферного воздуха являются промышленные предприятия, тепловые электростанции, автотранспорт, самолеты и сельскохозяйственное производство. Ежегодно в атмосферу планеты выбрасывается 200 млн. т. оксида углерода, 151 млн. т. оксида серы, свыше 500 млн. т. различных углеводородов, более 250 млн. т. мелкодисперсных аэрозолей (пыли) и многих других веществ.
Охрана атмосферного воздуха достигается очисткой выбросов предприятий, снижением выбросов автотранспорта, выделением санитарно-защитных зон и применением безотходных производств. Предприятия или их отдельные здания и сооружения с технологическими процессами, выделяющими в воздух вредные вещества, отделяют от жилых застроек санитарно-защитными зонами (лесными полосами или участками земли). Размеры санитарно-защитных зон в зависимости от класса предприятия устанавливаются по санитарным нормам проектирования промышленных предприятий СН 245-71.
На нашем предприятии в результате процесса изготовления печатных плат и пайки выделяются большое количество пыли, паров свинца, олова и флюсов. Очистка выбросов от пыли может быть грубой (когда задерживается крупная пыль с размером частиц более 50 мкм), средней (задерживается пыль от 10 до 50 мкм) и тонкой (задерживается пыль до 10 мкм). Для обеспыливания выбросов применяют пылеулавливающие устройства, которые можно разделить на две группы – улавливающие частицы пыли в сухом состоянии («сухие» аппараты) и газопромыватели, в которых пыль улавливается после увлажнения («мокрые» аппараты). Сухие пылеуловители более совершенны и, кроме того, позволяют возвратить уловленную пыль в производство. Для быстрого удаления вредных для дыхательной системы человека веществ воспользуемся вытяжной механической вентиляцией. В качестве устройства очистки воздуха можно применить пористые, нитеобразные или ватообразные материалы, что уменьшит загрязнение окружающей среды нашим предприятием.
В ходе проделанной работы был рассмотрен ряд факторов, влияющих на работоспособность персонала, работающего в производственном цехе по сборке и наладке устройства измерения отношения напряжений. Был предложен ряд мер по улучшения условий труда работающих. В завершении был произведен расчет зануления и поднят вопрос об охране окружающей среды. Были рассмотрены причины загрязнения природы, и был предложен вариант очистки производственных выбросов.
7 ГРАЖДАНСКАЯ ОБОРОНА
7.1 Оценка устойчивости производства измерителя отношения напряжений при загрязнении радиоактивными веществами после аварии на АЭС
При разработке дипломного проекта следует уделять внимание не только электрическому, конструктивно – технологическому расчету, но и следует предусмотреть меры безопасности жизнедеятельности обслуживающего персонала при изготовлении печатной платы от крупных различных аварий, стихий, в частности, нужно обеспечить устойчивую работу устройства в условиях повышенной радиации.
Современный этап развития мировой экономики характеризуется неустанным ростом ядерной энергетики. В настоящее время на Украине находится в эксплуатации 4 атомных электростанции (13 реакторов), что составляет 40% энергии, производимой на АЭС страны. Эксплуатация объектов с ядерными компонентами сопровождается авариями, утечкой радиоактивных веществ, что наносит значительный политический, экономический, экологический и психологический ущерб. Последствия таких аварий могут иметь непредсказуемые результаты.
Наличие радиоактивных продуктов, которые определяют радиационную обстановку в районе АЭС и зонах радиоактивного загрязнения, оказывает существенное влияние на действия формирований, режимы проживания населения и на проведение аварийно – спасательных работ. Радиоактивное имеет ряд особенностей, отличающих его от других поражающих факторов ядерного взрыва. К ним относятся: большая площадь поражения, до десяти тысяч квадратных километров; длительное сохранение поражающего действия (иногда до месяца), а также трудность обнаружения радиоактивных веществ не имеющих цвета, запаха и других внешних признаков. Вот почему необходимо произвести оценку радиационной обстановки при аварии наАЭС методом прогноза.
Исходными данными для оценки радиационной обстановки являются:
- Тип реактора – 1;
- Доля выброшенных радиоактивных веществ из реактора – n = 30%;
- Расстояние от объекта до аварийного реактора – Rx = 33.7 км;
- Время аварии реактора – Тав = 10.00 час;
- Продолжительность работы на объекте – Траб = 12 час;
- Допустимая доза облучения – Дуст = 0.3;
- Коэффициент ослабления радиации – Косл = 3;
- Скорость ветра на высоте 10 метров – V10 = 5 м/с;
- Облачность- 3 балл;
- Время начала работ на объекте – Тнач = 2 час.
1. Oпределяем категорию устойчивости атмосферы, соответствующую погодным условиям и заданному времени суток. По условию: облачность отсутствует (3 балла), день, скорость приземного ветра V10 = 5 м/с. Согласно таблице 2.1 категория устойчивости Д – нейтральная (изометрия).
2. Определяем среднюю скорость ветра Vср в слое распространения радиоактивного облака. Согласно таблице 2.2 для категории устойчивости Д и скорости приземного ветра V10 = 5 (м/с) средняя скорость ветра 5 (м/с).
3. Для заданного типа ЯЭР (РБМК – 1000) и доли выброшенных радиоактивных веществ (n = 30%), определяем размеры прогнозируемых зон загрязнения местности и наносим их в масштабе в виде правильных эллипсов.
Индекс зоны | М | А | Б | В |
Длина зоны, км | 496,2 | 126,4 | 33,7 | 9,96 |
Рисунок 7.1 - Размеры прогнозируемых зон загрязнения местности
4. Исходя из заданного расстояния от объекта народного хозяйства (Rx = 33,7 км) до аварийного реактора с учетом образующихся зон загрязнения устанавливаем, что объект оказывается на внешней границе зоны Б.
5. Определяем время начала формирования радиоактивного загрязнения (tф) после аварии. Для Rx = 33,7 км, V = 5 м/с, категории устойчивости Д и средней скорости ветра Vср = 5 м/с, tср = 1,5 час. Следовательно, объект народного хозяйства через 1,5 часа после аварии окажется в зоне радиоактивного загрязнения, что потребует принятия дополнительных мер защиты рабочих и служащих.
6. По таблице для зоны загрязнения Б с учетом времени начала работ (Тнач = 2 час) и продолжительности работы (12.00 час) определяем дозу облучения, которую получат рабочие и служащие объекта при открытом расположении объекта на краю зоны Б.
; .
С учетом нахождения объекта на внешней границе зоны ''Б'' дозу облучения определяем по формуле:
, где принимают равным значению, согласно исходным данным.
Расчеты показывают, что рабочие и служащие объекта за 12 часов работы получат дозу облучения 3,33 (рад), что превышает допустимую дозу облучения:
7. С учетом нахождения объекта на внешней границе зоны ''Б'' дозу облучения определяем по формуле:
Расчеты показывают, что рабочие и служащие объекта за 7 часов работы получат дозу облучения 3,33(рад), что превышает допустимую дозу облучения:
8. Используя данные таблицы 2.10, определяем допустимое время начала работы рабочих и служащих объекта после аварии на АЭС при условии получения Добл не более 5 рад:
Следовательно, рабочие и служащие объекта, чтобы получить дозу не выше установленной могут начинать работу в зоне ''Б'' и выполнить ее в течении 1 часов, не ранее, чем через 2 месяца после аварии на АЭС.
Таким образом, на основании исходных данных и полученных расчетов предусмотрены следующие мероприятия по защите различных категорий личного состава объекта, оказавшегося в зоне радиоактивного загрязнения местности.
Таблица 7,1 – Расчетные данные
Основные мероприятия:
1. Обеспечить круглосуточное радиационное наблюдение измерения проводить через каждые 1,5 часа в соответствии с расчетом ;
2. При обнаружении превышения допустимой дозы облучения ,а именно 0,3(рад), прохождении радиоактивного облака рабочих и служащих объекта укрыть в убежище;
3. До спада уровня радиации ниже 0,3 рад личные силы персонала должны находится на загрязненной местности в респираторах;
4. Во избежание переоблучения рабочие и служащие объекта могут возобновить работу в зоне «Б» и выполнить ее в течении 1 часа, но не ранее, чем через 2 месяца после аварии на АЭС, в это время , после аварии, укрываться в убежищах;
5. Для исключения заноса радиоактивных веществ необходимо провести герметизацию помещений или установить фильтровентиляционные агрегаты, провести дезактивационные работы.
... с полезным сигналом помехам.. Итак, ЦИП наиболее полно удовлетворяют основным требованиям предъявляемым в настоящее время к измерительной аппаратуре, — высокая точность и быстродействие, автоматизация процессов измерения и обработки информации. Обобщенная структурная схема ЦИП показана на рис.25 Рис.25. Обобщенная структурная схема ЦИП В цифровом приборе измеряемая величина х ...
... может быть определена в результате решения матричного уравнения Y = 2(K - Ko ) , (16) где -1 - знак обращения матриц К и Ко. 3.4 Методика измерения двух- и четырехполюсных радиоэлементов Для случая двухполюсника n = 1 (17) имеем i = 1; j = 0. (18) Очевидно, что при условиях (17) - (18) имеем: 1) коэффициенты матриц Ко и К с ...
... , внешнее магнитное поле, частота измеряемого переменного тока. Электромагнитные приборы благодаря простоте, дешевизне и надежности широко применяют для измерения токов и напряжений в сильноточных цепях постоянного и переменного тока промышленной частоты (50 и 400 Гц). Большинство электромагнитных амерметров и вольтметров выпускают в виде щитовых приборов различных класса 1,5 и 2,5. Имеются ...
... (от передвижения источников загрязнения) 1180,48 Всего за год: 211845,25 10. Совершенствование системы электроснабжения подземных потребителей шахты Расчет схемы электроснабжения ЦПП до участка и выбор фазокомпенсирующих устройств Основными задачами эксплуатации современных систем электроснабжения горных предприятий являются правильное определение электриче ...
0 комментариев