3.20 Обжиг лампы

Технологическая операция, проводимая для ламп накаливания с целью улучшения вакуума в отпаянной лампе и формирования надлежащей кристаллической структуры ТН, называется обжигом.

Для вакуумных ламп накаливания обжиг проводится в два этапа, первый из которых носит название «аблиц». Особенностью этого этапа является то, что его проведение сопровождается кратковременным тлеющим электрическим разрядом в лампе.

При аблице вначале на лампу подаётся напряжение несколько ниже номинального. При этом проходит выделение остаточных газов из нагретых деталей лампы и быстрое испарение газопоглотителя. Давление в лампе повышается. Газы и пары, под действием испускаемых ТН электронов и ускоряющего действия электрического поля, ионизируются и становятся токопроводящими. Ток в цепи лампы начинает проходить не только через ТН, но и через пары и газы, вызывая их свечение. Когда газопоглотитель свяжет основную массу остаточных газов, давление в лампе понизится и свечение исчезнет.

В момент появления синей вспышки электрическое сопротивление между вводами лампы сильно уменьшится. Это может вызвать резкое возрастание тока и переход тлеющего разряда в дуговой, быстро разрушающий лампу. Чтобы этого не случилось, последовательно с телом накала обрабатываемой лампы включается активное сопротивление (резистор). С возрастанием тока моментально увеличивается падение напряжения в подключённом резисторе, что в свою очередь приводит к понижению напряжения между вводами лампы. Как только светящий разряд в лампе прекратится, ток уменьшится и напряжение на лампе повысится. В результате аблица давление в лампе понижается с 1-5 Па до 10 -2 – 10 -3 Па.

Второй этап обжига проводится сразу же после аблица.

С этой целью, на несколько минут, на лампу подаётся напряжение на 15% выше номинального. При этом за счёт теплового излучения нагреваются стенки колбы и детали ножки, которые выделяют некоторое количество газов. Эти газы поглощаются отложившимися на колбе фосфорным поглотителем.

Температура колбы при обжиге лампы не должна превышать 80-100 0С. В противном случае газопоглотитель на стенках колбы не удерживает поглощённых газов и давление в лампе не понижается до требуемого значения.

В лампах на этом этапе очень важным является изменение кристаллической структуры вольфрама.

На первых ступенях обжига со спиралей снимаются внутренние напряжения (проходит первичная рекристаллизация), а на последних – формируется новая кристаллическая структура вольфрама (проходит вторичная рекристаллизация). Окончательная структура устанавливается после нескольких часов эксплуатации лампы, когда вторичная рекристаллизация завершается полностью.

Все готовые лампы проверяют, так называемым «острым» током. Для этого включают лампу на напряжение превышающее номинальное рабочее на 5-10% и выдерживают в течении нескольких секунд.

Если лампа не перегорит при испытании острым током, то есть основание полагать, что она не перегорит и у потребителя при номинальном рабочем напряжении.

Как аблиц, так и обжиг ламп накаливания производят на специальных автоматах обжига или комбинированных автоматах цоколевания, припайки электродов и обжига. При изготовлении небольших партий ламп обжиг производится на специальных столах.

3.21 Контроль и испытания ламп

Конструкция тех или иных источников света и применяемая технология должна обеспечивать стабильность световых параметров и механическую прочность ламп в течении всего срока службы, при транспортировке и хранении ламп – в пределах норм, установленных стандартами или техническими условиями.

Однако не может быть гарантии, что все 100% изготовляемых ламп обладают всеми параметрами и свойствами для нормальной работы в заданных режимах. Как показала практика, часть ламп в зависимости от технического уровня производства имеет отклонение от заданных параметров. Такие лампы должны быть обнаружены и не выпущены с завода.

Правильно организованный систематический контроль производства позволяет оперативно не только ликвидировать возникший брак, но вовремя предупредить его.

Основным методом контроля производства является испытания ламп. Испытанием ламп преследуют две цели:

Первая – определение способности ламп нормально работать в режимах (электрических, механических, тепловых, климатических и др.), оговорённых в стандартах и технических условиях.

Вторая – определение измеряемых параметров ламп, их средних значений и распределения параметров у партий ламп, продукции за день, декаду, месяц и т.д.; на основании полученных данных определяется технологический запас по тем или иным параметрам и задаются новые технические нормы на контроль материалов и деталей, на допуски при изготовлении технологического инструмента, на технологические процессы и т.д.

Для контроля производства часто применяют специальные методы испытаний, не предусмотренные стандартами и техническими условиями. Изучение статистического разброса параметров ламп и увязка этого разброса с технологическими факторами имеет решающее значение в деле повышения качества и надёжности работы ламп.

3.22 Технологическая выдержка и упаковка

В стеклянных деталях изготовленных ламп могут оставаться внутренние напряжения, которые в определённых случаях могут привести к растрескиванию стекла и натеканию ламп. Большую опасность представляют микротрещины в стекле, обычно обнаруживаемые в процессе текущего контроля ламп.

Как показал опыт, наибольшее число натекших ламп обнаруживается в первые дни после их изготовления. Для того чтобы предотвратить попадание потребителю медленно натекающих ламп, производится их выдержка на промежуточном складе. Срок выдержки устанавливается в зависимости от назначения ламп и предъявляемых к ним требований. В основном лампы накаливания общего назначения выдерживаются от 3 до 5 суток.

Кроме того, при повышенном браке, выявляемом при проверке среднесуточного процента брака, может устанавливаться для отдельных партий ламп более длительный срок технологической выдержки. Выявленный после технологической выдержки брак составляет от 0,2 до 1,5 %

Лампы выдерживаются в нерабочем состоянии упакованными во временную тару на участке выдержки. За время выдержки скрытые браки переходят в легко обнаруживаемые. Все лампы после завершения срока выдержки проверяют на зажигание и после отбраковки негодных передают на упаковку.

Упаковка ламп является конечной операцией в технологическом цикле производства ламп, от качества которой зависит защита их при хранении и транспортировке от механических повреждений, загрязнений, атмосферных осадков и других неблагоприятных условий среды. Сохранность ламп достигается применением тары из гофрированного картона, которая имеет ряд преимуществ перед деревянной тарой.

Многие электроламповые заводы имеют свои картонажные участки, оборудованные современным высокопроизводительным оборудованием по изготовлению картонной тары.

Заключение

В этом курсовом проекте подробно описаны основные технологические процессы изготовления лампы накаливания общего назначения В 220 – 25. Даны необходимые сведения о её применении и использовании.

В первой части курсового проекта дано описание основных элементов, присущих всем без исключения лампам накаливания, изложены условия эксплуатации, необходимые для наиболее долгой работы лампы. Вторая часть посвящена расчётам времени заварки лампы и отжига колбы. Соблюдение этих технологических режимов может дать высокое качество и долгую продолжительность работы лампы. Кроме основных технологических процессов, в третьей части также описаны второстепенные, включая упаковку, контроль, выдержку и испытания. Без этих процессов также нельзя гарантировать нормальную продолжительность работы ламп. Поэтому они также находятся в третьей части как и процессы изготовления вводов, колбы, тела накала, заварки.

Лампа накаливания общего назначения В 220 – 25 из-за малой потребляемой мощности и малого светового потока широко используется в быту для общего освещения в подъездах, складских помещениях; местного освещения в настольных лампах, декоративных светильниках; в промышленности для аварийного освещения.


Список использованных источников

 

1.   Ульмишек Л.Г.: Производство электрических ламп накаливания. М.-Л.:

Энергия, 1966. – 640 с.

2.   Денисов В.П., Мельников Ю.Ф.: Технология и оборудование производства электрических источников света: учебник для техникумов. М.: Энергия, 1983. – 384 с.

3.   Денисов В.П.: Производство электрических источников света. М.: Энергия, 1975. – 488 с.

4.   Афанасева В.И. Скобелев В.Н.: Источники света и пускорегулирующая аппаратура: учебник для техникумов. М.: Энергия, 1986. – 272 с.

5.   Справочная книга по светотехнике под редакцией Айзенберга Ю.Б. М.: Энергия, 1995. – 528 с.

6.   Фёдоров В.В.: Производство люминесцентных ламп, 3-е издание. М.: Энергия, 1981. – 232 с.

7.   Рохлин Г.Н.: Разрядные источники света, 2-е издание. М.: Энергия, 1991. – 720 с.

8.   Лугман С.Н., Волков В.И.: Галогенные лампы накаливания. М.: Энергия, 1980. – 136 с.

9.   Антошкин Ф.Н., Харитонов А.В., Савкин А.В.: Ртутные лампы высокого давления ДРЛ. Саранск: МГУ, 1992. – 140 с.  


Информация о работе «Изготовление технологического процесса изготовления лампы накаливания общего назначения типа В 220 -25»
Раздел: Схемотехника
Количество знаков с пробелами: 74488
Количество таблиц: 1
Количество изображений: 7

Похожие работы

Скачать
113945
2
3

шли широкое применение в производстве галогенных ламп бромистый метил (СН3Вг) и бромидный метилен (СН2Вг2). 2 Технологический процесс изготовления кварцевой галогенной лампы 2.1 Физические свойства кварцевого стекла и методы его обработки Значительное уменьшение габаритных размеров галогенных ламп и необходимость создания условий для действия галогенного цикла потребовали наличия высоких ...

Скачать
104201
24
8

... мин 7.5 Определение технических норм времени Расчет технических норм времени произведем только на ответственные операции. В результате проведенных исследований для синхронизации техпроцесса изготовления шестерни ведомой заднего моста было предложено применить сверло высокой стойкости и объединить операции притирки и контрольно-обкатную, что позволяет высвободить оборудование. На остальные ...

Скачать
85969
20
18

... (тема, объект, его составные части) Цель поиска информации Страна поиска Классификационные индексы Наименование источника поиска информации Энергосберегающее оборудование и технологии кристаллизации растворов солей Снижение энергозатрат на процесс кристаллизации сульфата натрия из осадительной ванны Россия Пат. 1752115 РФ, МКН G21F 9/16 Айзенштейн В.Г., Захаров М.К.,Носов Г.А., ...

Скачать
129923
32
5

... Исходя из выше перечисленных пунктов соответствия данной сборочной единицы всем нормам технологичности, делаем вывод о том, что конструкция рассматриваемого вала первичного в сборе является технологичной. 3.3 Разработка технологического процесса сборки Таблица 2 - Технологический маршрут сборки № операции Содержание перехода 1. На вал 1 установить стакан 17 2. Напрессовываем на вал 1 ...

0 комментариев


Наверх