Методика моделирования  

тепловизионных изображений.

 

В теории и практике проектирования тепловизионных оптико-электронных систем немаловажную роль играет моделирование тепловизионных изображений. Яркость тепловизионных изображений зависит как от распределения температуры по поверхности наблюдаемого объекта, так и от коэффициента излучения и ориентации визируемых элементов его поверхности - его формы. Кроме того, качество тепловизионного изображения зависит от передаточных характеристик оптической системы и всех звеньев тепловизора.

В основу теории моделирования тепловизионных изображений заложен процесс формирования видеосигналов, пропорционально потоку теплового излучения объекта для всего тепловизионного кадра, в котором содержится L строк и N элементов в строке. Величина видеосигнала U( N, L ) элемента разложения кадра описывается выражением:

l2

U ( N, L ) = ( 1/ p)×e (y)×w ×cosy(N,L)×dS(N,L)×ò Sl×W(l,T,y,z)×t0(l)×ta(l)×dl  ( 1 );

l1

где  w  - передний апертурный угол оптической системы тепловизора;

y  - угол между нормалью к элементу dS( N,L ) поверхности объекта и направлением наблюдения;

W(l,T,y,z) - спектральная светимость элемента dS(N,L) поверхности объекта, имеющего абсолютную температуру T;

e(y) - индикатриса спектрального коэффициента излучения поверхности объекта;

Sl - абсолютная спектральная чувствительность приёмника излучения тепловизора;

l1 ,l2 - границы спектральной чувствительности приемника излучения;

t0(l),ta(l) - спектральный коэффициент пропускания оптической системы и слоя атмосферы;

y,z - координаты элемента dS(N,L) поверхности объекта в пространстве предметов [ 2 ] .

Для анализа влияния на качество изображения передаточных характеристик оптической системы тепловизора, приёмника излучения, электронного блока обработки информации и видеоконтрольного устройства (ВКУ) используется распределение освещённости E(y’, z’), которое определяется по формуле:

 

00 j×2×p×(n×y’+z’)

E(y’, z’)= t0×w’×òò L(n, m)×h0(n,m)×hп(n,m)×hэ(n,m)×hв(n,m)×e dn×dm. (2)

-00

где w’ - задний апертурный угол оптической системы тепловизора с интегральным коэффициентом пропускания t;

 h0(n,m),hп(n,m),hэ(n,m),hв(n,m) - модуль передаточной характеристики соответственно оптической системы, приёмника излучения, электронного блока обработки информации и ВКУ тепловизора;

y’, z’ - координаты элемента dS поверхности объекта в пространстве изображений;

L(n,m) - пространственно-частотный спектр яркости поверхности объекта;

(n,m) - пространственные частоты, приведённые к плоскости изображений.

Тепловизионные методы в настоящее время широко используются в задачах распознавания и идентификации объектов. Но следует отметить, что пользуясь только обычными тепловизионными изображениями, величина видеосигналов в которых определяется выражением ( 1 ), распознать объекты внутри их контура практически невозможно. В чём причина потери информации о форме объекта внутри контура в обычных тепловизионных изображениях? Чтобы это выяснить рассмотрим рис.1. Согласно этому рисунку, справедливо равенство:

dS1 × cos y1 = dS 2 × cos y2 = dS3 × cos y3  ( 3 )

 

Анализируя рис.1 и эту связь, можно сделать вывод, что именно здесь и происходит потеря информации о форме объекта внутри контура. Сопряжённость всех элементов dS’ и dS, соответственно, приводит к тому, что площадки, расположенные под меньшими углами(yÞ0, cosyÞ1), должны иметь меньшие размеры dS, чтобы равняться тем площадкам, которые расположены под большими углами(yÞ900, cosyÞ0).

В связи с этим становится ясной необходимость использования таких информационных оптических характеристик теплового излучения объектов, которые исключали бы пропорциональную связь параметров dS и cosy. К таким величинам относятся поляризационные свойства теплового излучения поверхности объектов. По этой причине и представляют интерес задачи моделирования и обработки поляризационных тепловизионных изображений.

2.Теория и методы моделирования поляризационных

тепловизионных изображений объектов.

 

2.1.Теория моделирования поляризационных тепловизионных

изображений на основе вектор-параметра Стокса теплового

излучения.

Для подробного описания теории моделирования поляризационных тепловизионных изображений рассмотрим объект произвольной формы, который в декартовой системе координат описывается уравнением:

f(x,y,z) = 0.

Допустим, что этот объект ( рис.2 ) наблюдается из точки Н, где расположен чувствительный элемент тепловизионной системы. Выбираем на поверхности этого объекта элемент dS, который соответствует одному элементу разложения кадра. Наклон площадки dS по отношению к элементу приёмника определяется

углом y между нормалью и направлением наблюдения rн. Тогда векторы n и rн  определяют плоскость наблюдения. Коэффициент излучения рассматриваемого объекта имеет две составляющие: параллельную eïï, которая лежит в плоскости наблюдения ( n*rн ), и перпендикулярную eûë , которая перпендикулярна плоскости наблюдения. Положение элемента dS определяется в декартовой системе координат радиус-вектором R , а в сферической системе координат углами q и j.

Один из методов анализа поляризации пучка света - это метод вектор-параметра Стокса [ 3 ], характеризующий все виды и формы поляризации излучения поверхности объекта, который для нашего случая собственного излучения элементов dS(N, L) имеет вид:

é U0 ( N, L) + U90 ( N, L) ù

Ui( N, L ) =   ê U0 ( N, L) - U90 ( N, L) ê  , ( 4 )

ê U45 ( N, L) - U135 ( N, L) ç

ë 0    û

где i = 1, 2, 3, 4;

U0, U45, U90, U135  - величины сигналов, поляризованные, соответственно, под углами 00, 450, 900, 1350 относительно плоскости референции ( плоскости отсчёта ).

Степень поляризации теплового изображения зависит от величины видеосигналов поляризационных составляющих тепловизионных изображений элементов поверхности объекта с азимута поляризации соответственно равны 00, 450, 900, 1350. Величины видеосигналов U0, U90 в соответствии с тем, что коэффициент излучения e(y) можно представить в виде параллельной e÷÷ и перпендикулярной eûë составляющих, запишем в виде:

U0 (N, L) = A (N, L) ×[e÷÷ (y) × (n * j)2 + eûë(y) × (eûë × j)2 ],  ( 5 )

 U90 (N, L) = A (N, L) ×[e÷÷ (y) × (n * k)2 + eûë(y) × (eûë × k)2 ]. ( 6 )

где  l2

A ( N, L ) = ( 1/ p)×e (y)×w ×cosy(N,L)×dS(N,L)×ò Sl×W(l,T,y,z)×t0(l)×ta(l)×dl.

l1

Тогда, например, зависимость степени поляризации теплового изображения, с азимутом tn=0, от величины видеосигналов двух поляризационных тепловизионных изображений элементов поверхности объекта, с азимутами поляризации 00, 900, можно представить в виде:

P’ (N, L) = [ U0 (N, L) - U90(N, L)] / [U0 (N, L)+U90(N, L)], ( 7 )

где

P’ (N, L) - степень поляризации изображений с азимутом tn=0.

Если пронумеровать вектор-параметр Стокса, то формула (4) примет вид:

é 1 ù

U1(N, L) = U(N, L) ô P(N, L) ×cos2×t(N, L)    ê , ( 8 )

  ô P(N, L) ×sin2×t(N, L) ê

ë 0 û

где P(N, L) - степень поляризации излучения элемента dS(N, L) объекта;

t(N, L) - азимут поляризации излучения элемента dS(N, L).

На основе выражений (7) и (8) получим:

P’(N, L) = P(N, L) × cos2 ×t(N, L). ( 9 )

 

Подставив формулы (5) и (6) в выражение (7), получим следующее выражение для степени поляризации P’(N, L):

e÷÷ (y)×[(n*j)2 - (n*k)2] + eûë(y)×[(eûë*j)2 - (eûë*k)2]

P’(N, L) = ------------------------------------------------------------------ , ( 10 )

e÷÷ (y)×[(n*j)2 + (n*k)2] + eûë(y)×[(eûë*j)2 + (eûë*k)2]

где j , k - единичные орты координатных осей OY и OZ;

eûë, e÷÷  - единичные векторы, соответственно, параллельной и перпендикулярной компонент коэффициента излучения элемента dS.

Преобразуем выражение (10) в виде:

[e÷÷ (y)/eûë ]×[(n*j)2 - (n*k)2] + [(eûë*j)2 - (eûë*k)2]

P’(N, L) = ------------------------------------------------------------------ , ( 11 )

[e÷÷ (y)/eûë ]×[(n*j)2 + (n*k)2] + [(eûë*j)2 + (eûë*k)2]

Принимая во внимание выражение:

P(y) =[ e÷÷ (y) - eûë (y)] / [ e÷÷ (y) + eûë (y)] ,

получим связь величин e÷÷ (y) и eûë (y) со степенью поляризации P(y):

 

e÷÷ (y)/eûë (y)= [1+ P(y)] / [1- P(y)]. ( 12 )

Анализируя данные исследований степени поляризации различных материалов, индикатрису P(y) можно представить в виде зависимости:

P(y) = a × (1- cosy),

где а - параметр, зависящий от типа и шероховатости материала.

Принимая во внимание, что косинус угла y между нормалью к элементу dS и единичным вектором наблюдения rн  определяется как скалярное произведение этих векторов, получим:

P(y) = [ 1-(n*rн) ] × a . ( 13 )

Подставив это выражение в формулу (12) получим:

e÷÷ (y) 1+ [ 1 - (n*rн)] × a

--------- = ------------------------- . ( 14 )

eûë (y) 1 - [ 1 - (n*rн)] × a

Тогда, с учётом соотношения (12), из формулы (11) получим основное уравнение, выражающее зависимость между степенью поляризации P’(N, L) и формой объекта через функцию распределения нормали n для каждого элемента поверхности объекта:

1+ [ 1 - (n*rн)] × a

------------------------ [(n*j)2 - (n*k)2] + [(eûë*j)2 - (eûë*k)2]

1- [ 1 - (n*rн)] × a

 P’(N, L) = ---------------------------------------------------------------------- . ( 15 )

1+ [ 1 - (n*rн)] × a

------------------------- [(n*j)2 - (n*k)2] + [(eûë*j)2 + (eûë*k)2]

1- [1 - (n*rн)] × a

С помощью этой формулы можно определить степень поляризации всех элементов наблюдаемой тепловизором части поверхности объекта любой формы. Для этого нужно знать направление нормали n для каждого элемента поверхности в зависимости от его положения в декартовой системе координат. Оно определяется как оператор Гамильтона ( набла-оператор ) от функции f(x,y,z) = 0, описывающий форму объекта:

[( df/dx ) × i + ( df/dy ) × j + ( df/dz ) × k ]

n = ---------------------------------------------------- . ( 16 )

[( df/dx )2 + ( df/dy )2 + ( df/dz )2 ] 1/2

Единичный вектор наблюдения rн определяется как разница векторов l и R по формуле:

 

rн = ( l - R ) / | ( l - R ) |,  ( 17 )

 

где l - вектор, определяющий положение декартовой системы координат по отношению к точке наблюдения H;

R - радиус-вектор элемента dS поверхности объекта, определяющий его положение в декартовой системе координат x, y, z с единичными ортами i, j, k.

Радиус-вектор задаётся R формулой :

R = x × i + y × j + z × k . ( 18 )

Если направление наблюдения центра декартовой системы координат выбрано вдоль оси х, то есть направление вектора l и оси х совпадают, то вектор l выразится в виде:

l = l × i , ( 19 )

где l - расстояние от центра декартовой системы координат О до точки наблюдения Н;

i - единичный орт оси ОХ .

В этом случае выражение (17) примет вид:

rн = [( l-x)i + y × j +z × k ] / [( l-x)2+ y2 + z2]1/2 . ( 20 )

Вектор перпендикулярной составляющей коэффициента излучения eûë перпендикулярен плоскости, определяемой векторами n и rн ( плоскости наблюдения ), и находится как векторное произведение этих векторов по формуле:

 eûë = [ n* rн ] / | [ n* rн ] | . ( 21 )

 

Таким образом, определив степень поляризации P’ от всех элементов видимой части объекта, можно построить оптико-математическую модель поляризационных тепловизионных изображений объектов любой формы.



Информация о работе «Методика моделирования тепловизионных изображений»
Раздел: Технология
Количество знаков с пробелами: 47597
Количество таблиц: 0
Количество изображений: 0

Похожие работы

Скачать
77701
2
12

... реакция и происходит выделение и осаждение вещества на подложке, а газообразные продукты реакции уносятся потоком газа-носителя.   1.6 Приборы на основе КРТ   Краткая справка. В 1959 г. началось развитие исследований твердых растворов Hg1-xCdxTe (HgCdTe) с переменной шириной запрещенной зоны, предоставляющих широкие возможности для создания ИК-детекторов. Технологии выращивания HgCdTe ...

Скачать
36918
0
0

... измерений на ПЭДМ под руководством В.Д.Плахотникова, К.Ф.Саенко, Л.Н.Гриненко, А.Ф.Мандрыко и В.Д.Регинского. Принятые в ходе Великой Отечественной войны меры по развитию отечественной радиоэлектронной промышленности и разработке корабельных радиолокаторов (создание в 1943г. Совета по радиолокации при Государственном комитете обороны, Отдела спецприборов ВМФ во главе с С.Н.Архиповым, в 1945г. - ...

Скачать
129027
5
16

... разных этапах производства (потребления) электроэнергии. Основная цель создания таких систем – дальнейшеё повышение эффективности технических и программных средств автоматизации и диспетчеризации СЭС для улучшения технико-экономических показателей и повышения качества и надёжности электроснабжения ПП. Реформирование электроэнергетики России требует создания полномасштабных иерархических систем ...

Скачать
40022
0
0

... в 7-ми других странах - США, Финляндии, Израиле, Швейцарии, Германии, России и Нидерландах. Важнейшим и определяющим элементом криминалистической характеристики любого, в том числе и компьютерного преступления, является совокупность данных, характеризующих способ его совершения. Все способы подготовки, совершения и сокрытия компьютерных преступлений имеют свои индивидуальные, присущие только им ...

0 комментариев


Наверх