2.1. Теория моделирования поляризационных тепловизионных

 изображений на основе степени и азимута поляризации

теплового изображения.

Для описания этого метода воспользуемся рис. 3.

Допустим, что азимут поляризации излучения элемента dS поверхности объекта составляет угол t с поверхностью референции.

Для определения степени поляризации P’ необходимо найти величины видеосигналов U0 и U90 поляризационных тепловизионных изображений элементов dS поверхности объекта при азимутах поляризатора t=00 и t=900. Выразим U0 и U90 через параллельную и перпендикулярную составляющие коэффициента излучения элемента dS и азимут t поляризации этого элемента, который представляет собой угол между плоскостью поляризации ( ось ОА ) и плоскостью референции ( ось OY ). В общем случае, когда азимут t поляризации излучения элемента dS не совпадает с азимутом поляризатора, обе компоненты коэффициента излучения дают вклады в величины видеосигналов U0 и U90 следующим образом:

U0(N, L) = Umax × cos2 t + Umin × sin2 t = A(N, L) × ( e÷÷ × cos2 t + eûë ×sin2 t) ; ( 22 )

U90(N, L) = Umax × sin2 t + Umin × cos2 t = A(N, L) × ( e÷÷ × sin2 t + eûë ×cos2t) ; ( 23 )

 

где Umax= A(N, L) × e÷÷ , Umin= A(N, L) × eûë.

Согласно формуле (6) найдем степень поляризации P’(N, L) излучения элемента dS объекта в виде:

P’(N, L) = [ e÷÷  - eûë ] / [ e÷÷  + eûë] × cos(2 × t) = P × cos(2 × t) , ( 24 )

 

где P = [ e÷÷  - eûë ] / [ e÷÷  + eûë ] - распределение степени поляризации излучения элементов dS объекта.

Так как cosy = ( n* rн ), то с учётом формулы (12) имеем:

P’(N, L) = [ 1- ( n* rн ) ] × а × cos(2 × t); ( 25 )

 

В связи с тем, что вдоль оси ОА расположен вектор nyz , являющийся проекцией вектора n на плоскость xyz, то справедливо выражение:

cos t = ( nyz*j ) , ( 26 )

тогда, приняв во внимание тождество

 cos(2 × t) = 2 × cos2t - 1,

выражение (25) для расчёта степени поляризации всех элементов поверхности объекта примет вид:

P’(N, L) = а ×[ 1- ( n* rн ) ] × [ 2 × ( nyz*j )2 -1 ]. ( 27 )

 

Таким образом, формулы (15) и (27) с учётом формул (16) - (21) являются оптико-математической моделью поляризационных тепловизионных изображений излучающих объектов [5,6]. В тех случаях, когда необходимо моделировать поляризационные тепловизионные изображения по распределению степени поляризации, можно воспользоваться выражением:

P(N, L) = а ×[ 1- ( n* rн ) ] . ( 28 )


2.3. Формулы для моделирования изображения

диска, сферы и эллипсоида.

Для подтверждения теории моделирования поляризационных тепловизионных изображений рассмотрим объекты в виде сферы, эллипсоида и диска. Как уже отмечалось раньше, традиционный тепловизионный метод при наблюдении этих объектов сверху даёт одинаковое изображение как по контуру, так и внутри контура, несмотря на явное различие формы этих объектов внутри контура изображения видимой части их поверхности. Для подробного вывода остановимся на сфере, как наиболее наглядном и симметричном объекта ( рис. 4).

Уравнение сферы в декартовых координатах имеет вид:

 

f(x,y,z) =x2+ y2+ z2- R2= 0.  ( 29 )

 

Тогда n = (x × i + y × j + z × k ) /R - вектор нормали сферы,

где R = (x2+ y2+ z2)1/2 - радиус сферы.

Вектор наблюдения rн можно определить из формулы (17):

rн = [( l-x) × i - y × j - z × k ] / [R2+ l2 + 2 × l × x]1/2 . ( 30 )

 

Тогда по правилам векторного умножения:

e = [ n* rн ] = ( ny × rнz - nz × rнy) × i +( nz × rнx - nx × rнz) × j +( nx × rнy - ny × rнx) × k ;

 

в нормированном виде:

_____________

 eûë = ( lz × i - ly × j ) / (R × Ö R2+ l2 - 2 × l × x ), ( 32 )

Теперь определим все остальные недостающие выражения для формулы (15):

_____________

( n* rн  ) = (x × l -R2) / (R × Ö R2+ l2 - 2 × l × x ), ( 33 )

( n* j)2 = y2 / R2 ;  ( 34 )

 

( n* k)2 = z2 / R2 ; ( 35 )

( eûë * j)2 = l2 × z2/ (R2 × ( R2+ l2 - 2 × l × x ); ( 36 )

( e÷÷* k)2 = l2 × z2/ (R2 × ( R2+ l2 - 2 × l × x );  ( 37 )

После подстановки формул (30) - (37) в выражение (15), получим:

l × x - R2

2 - ---------------------------------

R2 × ( R2+ l2 - 2 × l × x )1/2 æ y2- z2 ö é l2 × z2 - l2 × y2    ù

----------------------------------------- × ï --------- ê + ï --------------------------- ç

l × x - R2 èR2    øëR2 ×( R2+ l2 - 2 × l × x )û

---------------------------------

R2 × ( R2+ l2 - 2 × l × x )1/2

P’ (N, L) = ---------------------------------------------------------------------------------------------- .

l × x - R2

2 - ---------------------------------

R2 × ( R2+ l2 - 2 × l × x )1/2 æ y2+ z2 ö é l2 × z2 + l2 × y2 ù

----------------------------------------- × ï --------- ê -  ï ---------------------------ç

l × x - R2 èR2 øëR2 ×( R2+ l2 - 2 × l × x)û

---------------------------------

R2 × ( R2+ l2 - 2 × l × x )1/2

После упрощения это выражение принимает вид:

P’(N, L) = [( y2 - z2 ) / ( y2 + z2 )] ×( 1 - x/R ). ( 38 )

Это есть степень поляризации теплового изображения сферы в декартовых координатах.

Перейдем к сферическим координатам:

X = R × sinq × cosj ;

Y = R × sinq × cosj ;

Z = R × cosq .

Тогда выражение (38) принимает вид:

sin2q × sin2j - cos2q

P’(N, L) = --------------------------- ( 1 - sinq × cosj) .  ( 39 )

sin2q × sin2j + cos2q

Это и есть степень поляризации теплового изображения сферы в сферических координатах.

Аналогично можно получить формулы для эллипсоида. Для этого необходимо начать вывод с функции:

f(x,y,z) =x2 / b2+ y2 / a2+ z2 / c2- 1= 0. ( 40 )

 

С учётом обозначения K = b/a - коэффициента сжатия эллипсоида ( b - большая полуось эллипсоида, a - малая ), получим формулу для степени поляризации в декартовых координатах:

________________

P’(N, L) = [( y2 - z2) / ( y2 + z2)] ×[ 1 - ( x / Ö x2 + k2 × y2 + k2 × z2)] . ( 41 )

C учётом сферических координат для эллипсоида:

X = b × sinq × cosj ;

Y = a × sinq × cosj ;

Z = a × cosq .

степень поляризации принимает вид:

sin2q × sin2j - cos2q é sinq × cosj ù

P’(N, L) = -------------------------- × ê 1- ------------------------------------------------------ ç(42)

sin2q × sin2j + cos2q    ë  Ö sin2q × cos 2j + k2 ×( sin2q × sin2j + cos 2q) û

Что касается диска, то для него используется формула ( 42 ), с учётом, что коэффициент сжатия k := 0.1, т.е. эллипсоид сжатый до состояния диска, когда большая полуось составляет всего лишь 10-ю часть от малой полуоси; для сферы формула ( 42 ) справедлива при k = 1. Таким образом, для получения модели поляризационного тепловизионного изображения диска, сферы и эллипсоида можно пользоваться формулой ( 42 ) с использованием различных значений k. При этом необходима связь углов q и j с номерами строк L и номерами элементов в строках N тепловизионного кадра. На основе геометрии наблюдения и логических рассуждений были получены следующие связи:

q = L × p / L0 ;  ( 43 )

j = ( N × p / N0 ) - p/2 ; ( 44 )

где L0 - число всех строк в кадре;

N0 - число элементов в каждой строке.


Информация о работе «Методика моделирования тепловизионных изображений»
Раздел: Технология
Количество знаков с пробелами: 47597
Количество таблиц: 0
Количество изображений: 0

Похожие работы

Скачать
77701
2
12

... реакция и происходит выделение и осаждение вещества на подложке, а газообразные продукты реакции уносятся потоком газа-носителя.   1.6 Приборы на основе КРТ   Краткая справка. В 1959 г. началось развитие исследований твердых растворов Hg1-xCdxTe (HgCdTe) с переменной шириной запрещенной зоны, предоставляющих широкие возможности для создания ИК-детекторов. Технологии выращивания HgCdTe ...

Скачать
36918
0
0

... измерений на ПЭДМ под руководством В.Д.Плахотникова, К.Ф.Саенко, Л.Н.Гриненко, А.Ф.Мандрыко и В.Д.Регинского. Принятые в ходе Великой Отечественной войны меры по развитию отечественной радиоэлектронной промышленности и разработке корабельных радиолокаторов (создание в 1943г. Совета по радиолокации при Государственном комитете обороны, Отдела спецприборов ВМФ во главе с С.Н.Архиповым, в 1945г. - ...

Скачать
129027
5
16

... разных этапах производства (потребления) электроэнергии. Основная цель создания таких систем – дальнейшеё повышение эффективности технических и программных средств автоматизации и диспетчеризации СЭС для улучшения технико-экономических показателей и повышения качества и надёжности электроснабжения ПП. Реформирование электроэнергетики России требует создания полномасштабных иерархических систем ...

Скачать
40022
0
0

... в 7-ми других странах - США, Финляндии, Израиле, Швейцарии, Германии, России и Нидерландах. Важнейшим и определяющим элементом криминалистической характеристики любого, в том числе и компьютерного преступления, является совокупность данных, характеризующих способ его совершения. Все способы подготовки, совершения и сокрытия компьютерных преступлений имеют свои индивидуальные, присущие только им ...

0 комментариев


Наверх