13. ЗАКОНЫ СОХРАНЕНИЯ

13.1 Законы сохранения, как отражение симметрии процессов преобразования.

Идея сохранения, следствием которой являются законы сохранения, появилась сначала как чисто философская догадка о наличии стабильного, неизменного в вечно изменяющемся мире. Еще античные философы-материалисты пришли к понятию материи - неучтожимой и несотворимой основы всего существующего. С другой стороны, наблюдения постоянных изменений в природе приводило к представлению о вечном движении материи как важнейшем ее свойстве и, как следствие этого, к изменяемости одних и неизменности других свойств материи.

В этом разделе мы рассмотрим законы сохранения как отражение некоторых операций, вводимых в физике. Напомним, что законами сохранения называются те закономерности, согласно которым численные значения некоторых параметров или величин не меняются со временем в любых процессах или в определенном классе процессов.

Важнейшими законами сохранения, справедливыми для любых изолированных систем, являются законы сохранения энергии, импульса, момента импульса и электрического заряда.

Полное описание физической системы возможно только с использованием динамических законов. Так описание движения материальной точки возможно с использованием законов динамики или законов Ньютона. Однако во многих случаях динамические законы системы либо неизвестны вообще, либо они настолько сложны, что не поддаются анализу. В таких случаях законы сохранения позволяют сделать заключения о характере поведения системы. Причем, зачастую, это можно сделать очень простым образом.

Вспомним школьную задачу о падения тела с высоты h. Скорость тела в момент удара о землю можно найти с использованием законов динамики: первого и второго законов Ньютона. Но, эту же задачу можно решить, используя закон сохранения механической энергии, как говорится, в одну строку. Приведем это решение.

Энергия тела до падения определялась его потенциальной энергией . После момент ударом о землю его потенциальная энергия полностью перешла в кинетическую и стала равной . Поскольку, значение энергии в процессе падения сохранилось, названные можно приравнять и получить скорость тела в момент падения.

.

Решение задачи оказалось очень простым, благодаря использованию закона сохранения механической энергии. Очень часто решение других, гораздо более сложных задач значительно упрощается с использованием других законов сохранения. Приведенный пример показывает, что чем больше законов сохранения нам известно, тем легче и точнее мы можем описывать поведение сложных систем. Возникает интуитивное понимание того, что законы сохранения являются отображением каких-то более общих закономерностей природы.

Целью настоящего раздела является рассмотрение связи законов сохранения с некоторыми математическими операциями и преобразованиями, которые будут введены ниже.

Любая физическая система может быть подвергнута каким-либо операциям или преобразованиям, не изменяющим ее состояния или ее свойств. Например, можно перейти из одной инерциальной системы отсчета в другую с использованием преобразований Галилея. Если физические законы, устанавливающие связь между физическими величинами или параметрами, не меняются в результате таких операций или преобразований, то говорят, что эти законы инвариантны относительно этих преобразований или обладают симметрией к этим преобразованиям.

Введем некоторые из преобразований пространства и времени. Первое из них - это перенос или сдвиг системы как целого в пространстве. Такая операция преобразования сводится к переносу начала отсчета, либо всей системы отсчета и задается вектором. Симметрия физических законов относительно сдвигов в пространстве означает эквивалентность всех точек пространства. Не существует какой-то "особой" точки в пространстве, которую можно было бы выделить для введения абсолютной системы отсчета, абсолютной системы координат. Этот важнейший факт принято называть однородностью пространства.

Второе преобразование - это поворот системы отсчета или системы координат в пространстве. Его можно свести к поворотам системы относительно одной или всех координатных осей. Симметрия физических процессов и законов относительно этого преобразования связана с изотропностью пространства, т.е. с эквивалентностью всех направлений в пространстве. Нет такого направления, относительно которого мы могли бы задать, например, ось (ох), и которое имело бы преимущества перед другими направлениями. Все направления в пространстве равноценны.

Третье преобразование - сдвиг во времени или изменение начала отсчета времени. Симметрия физических законов относительно сдвига во времени означает, что законы, явления, процессы не меняются со временем, т.е. физический процесс или явление можно повторить или воспроизвести. Безразлично, в каком времени рассматривать физический процесс, в прошлом, в настоящем или в будущем; он всегда будет протекать одинаково. Благодаря этому обстоятельству можно произвольно выбирать начало отсчета времени.

Кроме названных существует еще большое количество специальных преобразований, применимых к конкретным законам. Некоторые из них уже известны, с другими познакомимся позже.

В 1918 году немецкий математик Э.Нетер (1882-1935) сформулировал теорему, названную позднее его именем. Эта теорема играет огромную роль в физике и во всем естествознании. Она устанавливает связь между свойствами симметрии физической системы и законами сохранения. Не вдаваясь в математическую сторону дела, рассмотрим идею теоремы Нетера. Для физической системы, состояние которой описывается системой дифференциальных уравнений, каждому преобразованию, непрерывно зависящему от какого-либо параметра (скорости, времени, координат и т.д.), соответствует свой закон сохранения. При этом на преобразования накладывается условие: при его применении должен остаться инвариантным (т.е. неизменным) некий параметр - действие (S). Действие - это физическая величина, имеющая размерность произведения энергии на время или импульса на координату.

Действие - очень важный параметр в физике. Он позволяет сформулировать принцип наименьшего действия. Содержание этого принципа заключается в том, что если система переходит из одного состояния в другое, то этот переход осуществляется таким образом, чтобы изменение действия было бы минимальным. Использование принципа наименьшего действия дает еще одну возможность описать поведение системы, найти уравнения ее движения, изучить ее движение. В общем случае, принцип наименьшего действия указывает, в каком направлении должно изменяться состояние системы. Из этого принципа, например вытекают все законы геометрической оптики как в однородной, так и в неоднородной среде. К сожалению, детальное изучение принципа наименьшего действия требует знание таких разделов высшей математики, как вариационное исчисление, и невозможно в рамках настоящего курса.


Информация о работе «Концепция современного естествознания»
Раздел: Физика
Количество знаков с пробелами: 113437
Количество таблиц: 2
Количество изображений: 5

Похожие работы

Скачать
508393
2
1

... инерциальных системах отсчета. Пространственно-временной континуум – неразрывная связь пространства и времени и их зависимость от системы отсчета. Тема 11. Основные концепции химии   1. Химия как наука, ее предмет и проблемы Важнейшим разделом современного естествознания является химия. Она играет большую роль в решении наиболее актуальных и перспективных проблем современного общества. К ...

Скачать
29368
0
0

... сущность теории химической эволюции и биогенеза. Опишите историю открытия и изучения клетки. Зав. кафедрой -------------------------------------------------- Экзаменационный билет по предмету КОНЦЕПЦИИ СОВРЕМЕННОГО ЕСТЕСТВОЗНАНИЯ Билет № 30 Назовите и охарактеризуйте междисциплинарные естественные науки. Сформулируйте третий закон механического движения Ньютона. Каким ...

Скачать
157302
0
0

... вещей (»арден 1987: 53-68, Назаретян 1991: 60, Абдеев 1994: 150- 160). Атрибутивная концепция информации - информация как мера упорядоченности структур и их взаимодействий на всех стадиях организации материи (Абдеев 1994: 162). Одна из самых сложных проблем современного естествознания - функционирование отражения в неживом мире (существует ли в неживом мире опосредующее звено между ...

Скачать
42356
0
0

... , или концепция биогенеза). В XIX веке ее окончательно опроверг Л. Пастер, доказав, что появление жизни там, где она не существовала, связано с бактериями (пастеризация – избавление от бактерий). 3. Концепция современного состояния предполагает, что Земля и жизнь на ней существовали всегда, причем в неизменном виде. 4. Концепция панспермии связывает появление жизни на Земле с ее занесением из ...

0 комментариев


Наверх