3.5. Построение графика углов передачи движения.

График изменения угла передачи движения γ по углу поворота кулачка строим по данным полученным графическим способом. Для этого точки Во,…,В25, полученные на совмещенном графике соединим с центром вращения кулачка О. Тогда острые углы, образованные этими прямыми с соответственными лучами, дают искомые углы γ.


Табл 7.

Углы передачи, измеренные графическим способом.

№ пол.

0

1

2

3

4

5

6

7

8

9

10

11

12

γ° 75 70 65 63 62 62 64 72 80 87 92 97 79
№ пол.

12

13

14

15

16

17

18

19

20

21

22

23

24

γ° 79 75 72 70 68 65 62 68 74 81 89 97 100

Выберем следующие масштабы для построения графка mj=0.18271 рад/мм. mγ=1°/мм.

Как видно из таблицы минимальный угол передачи больше минимально допустимого, следователь заклинивания в механизме не произойдёт как на прямом ходе, так и при реверсе.

4. Проектирование зубчатой передачи.


4.1. Исходные данные для проектирования зубчатой передачи:

Модуль m=14 мм.

Zш=13

Zк=30

aинструмента=20°

С=0,25m=3,5 мм.

ha=1

число зубьев колёс редуктора

z3=106

z4=48

z5=18

z6=76

z7=25

z8=100

n1=1400 об/мин

n8=150 об/мин

4.2. Расчёт редуктора.

Напишем уравнение передаточного отношения редуктора:

U1-8 = I1-2*I3-H*I7-8 = n1/n8 =1400/150 = 9.33

I3-6=(w6-wH)/(w 3-wH)=Z4Z6/(Z3Z5)

I3-H=n3/nh=1-i36.

I3-6=I34*I56=(-1)Z4/Z3(-1)Z6/Z5=(Z4Z6)/(Z3Z5)

I3-H=1-(48*76)/106*18=1-304/159= -0.912

I7-8=(-1)Z8/Z7=-N7/N8= -100/25= -4

N7=NH= -I7-8*N8=4*150=600 об/мин.

N=IN= -0.912*600= -547.17 об/мин.

N3=N2,

I1-2= (-1)Z2/Z1= -N1/N2= -2.5586.

Z2/Z1= 2.5586

Наиболее близко этому значению соответствует Z2=74 и Z1=29.

Рассчитаем число оборотов сателлита по формуле Виллиса:

I5-6=(w5-wH)/(w6-wH)=Z6/Z5, т.к w6=0, то

1-w5/wH=Z6/Z5

N5=N4=(1- Z6/Z5)NH=(1-76/18)*600= -1933.3 об/мин.

4.3. Построение картины зубчатого зацепления.

Применяем неравносмещенное зацепление. Из справочных таблиц имеем:

Iш-к= Zк/Zш= 30/13=2,3

Δy=0.18 X1=0.8 X2=0.471

XΣ=X1+X2=1.271

Y= XΣ –ΔY=1.091

Определим угол зацепления aw:

Inv aw=2*(X1+X2)/(Zш+Zк)*tga +inva=

2*1.271*tg20°/43+0.014904=0.036421.

Отсюда a w =26°34’45’’

Рассчитаем размеры зубчатых колёс по следующим формулам:

Шаг зацепления: Рa=р*m=43,9мм.

Радиусы делительных окружностей:

R1=mZш/2=91 мм; R2=mZk/2=210 мм.

Радиусы основных окружностей

Rb1=R1cosa w =81.38; Rb2=R2cosa w =187.8

Толщина зуба по делительной окружности:

S1=Pa/2+2*X1*m*tga=30.15

S2= Pa/2+2*X2*m*tga=26.73

Радиусы окружностей впадин:

Rf1=R1-m(ha+c-X1)=84.7

Rf2=R-m(ha+c-X2)=199.1

Межосевое расстояние

aw=m((Zш+Zk)/2+Y)=316.274

Радиусы начальных окружностей

Rw1=R1(1+2Y/(Zш+Zк))=95,6177

Rw1=R2(1+2Y/(Zш+Zк))=220,6563

Глубина захода зубьев:

Hd=(2ha-Δy)m=25.48

Высота зуба: h=hd+cm=28.98

Радиусы окружностей вершин:

Ra1=Rf1+h=113.68

Ra2=Rf2+h=228.074

Для построения выбираем масштаб ml=0,001 м/мм.

Построение картины зацепления начинаем с дуг начальных окружностей, касающихся в точки Р – полюсе зацепления. Через точку Р проводим прямую NN, образующую угол aw с общей касательной ТТ к начальным окружностям в точке Р. затем из центров О1 и О2 зубчатых колёс опускаем на прямую NN перпендикуляры О1N1 и O2N2, являющиеся радиусами основных окружностей rb1 и rb2, и строим основные окружности. Строим эвольвенты, которые описывает точка Р прямой NN при перекатывания её по основным окружностям, как для первого, так и для второго колеса. Проводим окружности впадин и вершин колёс. Проводим делительную окружность первого колеса. От точки С пересечения этой окружности с соответствующей эвольвентой откладываем по делительной окружности вправо и влево дуги СК и СЕ, равные шагу зацепления Рa в масштабе. Затем от точек Е, С и К откладываем влево дуги ЕF, CD и KL, равные толщине зуба S1. На втором колесе построения аналогичны.

Переходим к определению активной линии зацепления. Теоретической линией зацепления является отрезок N1N2 прямой NN. Активной линией зацепления является отрезок В1В2 прямой NN, заключенный между точками её пересечения с окружностями вершин колёс.

Определяем дугу зацепления. Для этого через крайние точки В1’ и B2’ рабочего участка профиля зуба первого колеса проводим нормали к этому профилю, то есть касательные к основной окружности первого колеса. Дуга а1в1 начальной окружности, заключенная между точками а1 и b1 пересечения этих нормали с начальной окружностью, является дугой зацепления первого колеса. Дугу зацепления а2b2 для второго колеса находим аналогично. Подсчитаем длину дуг зацепления:

A1B1=В1В2/(сosaw)=48/(cos26°34’45’’)=54.3 мм.

Подсчитаем коэффициент перекрытия по формуле:

Ea=В1В2/(p*m*сosaw)=48/(14*p*cos26°34’45’’)=1.22

При этом отрезок В1В2 берём из чертежа.

Построим диаграммы для значений коэффициентов удельных скольжений V1 и V2. Для этого проводим ось ОХ, параллельную линии зацепления N1N2. Перпендикуляра N1O1 и N2O2 отсекают на ОХ отрезок g, равный теоретической линии зацепления N1N2. На оси ОХ откладываем значения Х, а на прямых, паралельных N1O1, принятой за ось ординат, для соответствующих значений Х откладываем значения V1 и V2. Для выделения частей диаграмм, соответствующих значения V1 и V2 рабочих участков профилей зубьев, восстанавливаем из точек В1 и В2 линии зацепления перпендикуляры. Для большей наглядности строим круговые диаграммы V1 и V2 непосредственно на профилях зубьев соответствующих колёс.

Значения коэффициентов V1 и V2 подсчитываем по формулам:

V1=1-((g-x)Zш/(ZкХ))

V2=1-1/((g-x)Zш/(ZкХ))

Значения g и X берём с чертежа в масштабе. Подсчитав значения V1 и V2, результаты занесём в таблицу 6.

Табл 6.

Значения коэффициентов V1 и V2.

Х 0 Х1=42,75 Х2=66,5 Х3=91,75 Х4=117 д.=219
V1 -∞ -07087 0 0.399 0.622 1
V2 1 0.44 0 -0.664 -1.647 -∞

 Для построения диаграмм назначим масштаб: mv=0,1 1/мм.


Информация о работе «Расчёт поперечно-строгального станка»
Раздел: Технология
Количество знаков с пробелами: 44063
Количество таблиц: 20
Количество изображений: 4

Похожие работы

Скачать
17236
5
10

...  7,5  7,5 аА’  3,8  2,5  2,6  6,4  8,5  10,3  7,5 ab  5,7  3,4  3,8  10,5  19,3  21,4  11 ac  5,8  2,1  1,7  10,5  16,1  20,8  11,7 1.5 Диаграммы движения выходного звена. Диаграмму перемещения строим , используя полученную из S-t плана механизма траекторию движения точки С. Диаграммы скорости V-t и ускорений A-t строим из полученных 12 планов скоростей ...

Скачать
18120
6
8

... на VBA Ускорения Величина ускорения, м/с^2 0 1 2 3 4 5 6 7 8 9 10 11 12 Расчётные 4.4 2.54 1,50 -0,351 -0.99 -1.19 -3,80 -3.91 -6.8 -6.31 1,28 6.99 4.4 Графические 4.36 2.41 1,60 -0.324 -0.96 -1.09 -3,90 -3.88 -6.7 -6.161 1,30 6.924 4.36 2. Силовой анализ механизма Исходные данные: масса кулисы ; масса шатуна ; масса ползуна . сила полезного ...

Скачать
125770
27
17

... участка. Принимаем процент узлов и деталей, поступающих в ремонт на условиях кооперации из эксплуатационного депо для тележечного участка =30% Принимаем программу для тележечного участка 1000 ед. 2. Совершенствование технологии контроля автосцепочного устройства   2.1 Виды и порядок осмотра автосцепочного устройства Автосцепное устройство подвижного состава должно постоянно находиться ...

Скачать
66813
0
6

... . Поэтому автолюбитель, желающий самостоятельно проводить на автомобиле более или менее сложные операции по техническому обслуживанию и ремонту, должен обзавестись еще некоторыми приспособлениями и инструментом. Слесарно-монтажный инструмент. Гаечные открытые ключи желательно иметь в полном ассортименте, причем лучше в двух экземплярах. Комбинированные и разводные ключи, специальные клещи для ...

0 комментариев


Наверх