1.1.2. Управляемый синтез.

В последних обзорах, посвящённых дендримерам [1,2], управляемый синтез стали подразделять на дивергентный и конвергентный подходы.

Описанная выше (см. гл. 1.1) и ставшая уже классической схема синтеза дендримеров путём повторяющихся реакций наращивания слоя и снятия защиты, начинающаяся с исходного разветвляющего центра (рис. 5), получила название дивергентной. Отличительной особенностью этой схемы является быстрое увеличение числа реакционных центров, располагающихся на поверхности дендритной молекулы с возрастанием номера генерации. Это, в свою очередь, приводит к трудностям очистки конечных соединений от продуктов неполного замещения поверхностных функциональных групп, если таковые имеются в системе. Проблема очистки связана с очень малым различием молекулярных масс дендримеров с полностью прореагировавшими поверхностными группами и продуктов неполного замещения. Различие молярных масс таких соединений не превышает нескольких процентов.

Для преодоления указанного выше недостатка Фреше , а также Нинан и Миллер независимо друг от друга предложили другой подход, названный ими конвергентным методом. Если в случае дивергентного синтеза рост дендритной молекулы происходит от центра к периферии, то в данном случае, наоборот, дендример “собирается”, начиная с поверхностных групп.

Синтез ЖК. Дендримеры

Рис. 8. Схема конвергентного синтеза дендронов.

Придерживаясь системы обозначений, введённых ранее (см. гл. 1.1), конвергентный рост монодендрона можно представить схемой, изображённой на рисунке 8. Стоит напомнить, что при управляемом синтезе химическая связь образуется только при взаимодействии функциональных групп А и С. Рост дендрона начинается со взаимодействия будущих поверхностных групп S с разветвлённым мономером типа А2В. Затем происходит активация образованного “димера” (перевод группы В в С) и опять взаимодействие с мономером А2В с образованием “тетрамера” и т.д. При этом, независимо от номера генерации, на каждой стадии роста дендрона количество реагирующих групп остаётся постоянным и обычно равно 2 или 3.

Таким образом получается дендрон, содержащий в своей так называемой “фокальной точке” реакционноспособную группу С или скрытую функциональность В. Для получения дендримера необходимо присоединить эти дендроны к разветвляющему центру (рис. 9).

Синтез ЖК. Дендримеры

Рис. 9. Схема получения дендримеров из моноденронов.

Следует отметить, что монодендроны можно получить и дивергентным способом, а затем их присоединить к разветвляющему центру по этой же схеме с образованием дендримера.

Как уже отмечалось выше, преимуществом конвергентного подхода является малое число реагирующих групп на каждой стадии, что, в свою очередь приводит к минимальному числу промежуточных продуктов (продуктов недозамещения). Кроме того, различия в молекулярной массе конечных, исходных и промежуточных продуктов столь велико (в 1.5 ё 2 раза), что позволяет легко выделить целевое соединение в чистом виде.

Однако существенным недостатком данного метода являются стерические затруднения, возникающие на стадии присоединения монодендрона к разветвляющему центру. Здесь столь малое число реакционных групп (фактически единственная у монодендрона - фокальная точка) играет отрицательную роль. В реакционной системе оказывается довольно низкая концентрация реагирующих групп, активность которых ещё более снижена большим количеством “инертных” (поверхностных и др.) групп, и протекание реакции затруднено.

Учитывая рассмотренные выше преимущества и недостатки обоих подходов, следует отметить, что в последнее время наблюдается тенденция использования комбинированного подхода, заключающегося в присоединении монодендронов, полученных конвергентным методом, не к точечному разветвляющему центру, а к дендримеру генерации 2 - 3, синтезированному заранее по дивергентной схеме [1].

Обратимся теперь к конкретным синтетическим примерам получения регулярных дендримеров.

1.1.2.1. Дивергентный подход.

К настоящему времени с помощью дивергентного подхода синтезированы дендримеры на основе полиамидоаминов [20], полиэтилениминов [20], углеводородов (иптицены) , полиэфиров , полиамидоспиртов (“арборолы”) [19], полиариламинов , полисилоксанов [3, ], поликарбосиланов [10, 11] и многие другие [1].

Остановимся подробнее на синтезе полисилоксанов и поликарбо-силанов, поскольку именно эти соединения, синтезированные в группе Музафарова А.М. (ИСПМ РАН) были взяты за основу для данной работы.

Полисилоксановые дендримеры получают по схеме, представленной на рисунке 10 [3, ]. За основу здесь взята реакция взаимодействия силанолята натрия с хлорсиланом, протекающая количественно с образованием силоксановой связи. Для синтеза этих дендримеров используется трифункциональный разветвляющий центр (NC = 3) и мономеры АВ2 - типа (NB = 2). Получены регулярные структуры вплоть до генерации 8. Строение и индивидуальность конечных соединений доказаны методами ЯМР 1Н и 29Si-спектроскопии, гель-проникающей хроматографии.

Синтез ЖК. Дендримеры

Рис. 11. Схема синтеза регулярных поликарбосилановых дендримеров [10].

Поликарбосилановые дендримеры получают по схеме, представленной на рисунке 11. Для синтеза таких систем может быть ди-, три- или тетрафункциональный разветвляющий центр и три- или тетрафункциональные мономеры [10]. В данном случае в качестве исходного разветвляющего центра использован тетрааллилсилан, к которому по реакции гидросилилирования присоединяют метилдихлорсилан. Хлорсилильные группы впоследствии переводят в аллильные с помощью реактива Гриньяра - аллилмагнийхлорида. Эту последовательность повторяют несколько раз до получения дендримера необходимой генерации. К настоящему времени получены поликарбосилановые дендримеры с концевыми аллильными и винильными группами вплоть до 4 генерации. Строение и индивидуальность этих соединений доказаны методами ЯМР 1Н и 29Si-спектроскопии, гель-проникающей хроматографии.


Информация о работе «Синтез ЖК. Дендримеры»
Раздел: Наука и техника
Количество знаков с пробелами: 64787
Количество таблиц: 0
Количество изображений: 23

Похожие работы

Скачать
28613
0
2

... ; он состоит в основном из церамидов, холестерина и жирных кислот, образующих систему мультиламеллярных бислоев. Ниже находится слой живых эпидермальных клеток и слой дермы, пронизанной капиллярами, способными «разнести» проникшее через барьер вещество по всему организму. Клеточная мембрана керотиноцитов в верхних слоях зернистого слоя становится прерывистой, а потом исчезает. Вместо неё остаётся ...

Скачать
50223
0
3

... , подобных квантовым точкам, обещает большую точность и снижение стоимости путем использования методов производства, разработанных для полупроводниковой промышленности [2].   Приложения современных нанотехнологии в медицине Сегодня мы еще довольно далеки от описанного Фейнманом микроробота, способного через кровеносную систему проникнуть внутрь сердца и произвести там операцию на клапане. ...

Скачать
24068
0
5

... может находиться больше информации, чем на триллионе СD. Поэтому ученые решили использовать изобретение природы и применить молекулы ДНК для хранения и обработки данных в биокомпьютерах. Кроме того, биомолекулярный компьютер может параллельно выполнять тысячи и миллионы операций, т.е. будут работать в 1.000.000.000 быстрее. Еще одно важнейшее свойство – экономный расход энергии: ДНК-компьютер ...

Скачать
125739
1
12

... при изучении синтеза новых материалов и процессов ионного транспорта в них. В чистом виде такие закономерности наиболее четко прослеживаются при исследовании монокристаллических твердых электролитов. В то же время при использовании твердых электролитов в качестве рабочих сред функциональных элементов необходимо учитывать, что нужны материалы заданного вида и формы, например в виде плотной керамики ...

0 комментариев


Наверх