2. ВЫБОР ВАРИАНТА ЭЛЕКТРОСНАБЖЕНИЯ
2.1. Графики потребления электроэнергии
Энергия, потребляемая сельской усадьбой, расходуется на обогрев и приведение в действие различных электроприемников. Для обогрева в сельской местности традиционно используется ископаемое твердое или газообразное топливо, реже жидкое топливо. Применение для этих целей электроэнергии скорее является анахронизмом, нежели перспективным направлением.
Если исключить из рассмотрения обогрев, то остальные потребители являются электрическими и требуют электроэнергии. В этой связи, для проектирования электроснабжения необходимо иметь информацию о графиках электропотребления или изменении потребляемой мощности.
В руководящих указаниях по проектированию электроснабжения /36/ приведены данные о максимальной нагрузке на вводе в сельский жилой дом,которая составляет 1,5...7,5 кВт в зависимости от наличия газификации местности и уклада жизни. Однако, данных об изменении нагрузки в течение суток не приводится. В то же время, из-за того, что графики поступления энергии от ВИЭ неуправляемы человеком, для выбора варианта электроснабжения необходимо знать графики потребления электроэнергии.
Потребление электроэнергии является случайной величиной, и для получения графиков рекомендуется проводить соответствующие измерения, накапливая статистические данные. Однако, такой метод получения графиков электропотребления является трудоемким, требующим большого числа наблюдаемых объектов и длительного времени наблюдений. Так, для получения графика с надежностью 0,9 и при доверительном интервале 30% подвергнуть наблюдениям 622 сельские дома /5/, причем все они должны быть однотипными, а наблюдения должны проводиться в течение года.
Известны другие методы получения графиков электропотребления, например метод экспертной оценки. Этот метод основан на опросе респондентов и позволяет значительно сократить время получения необходимой информации. Однако,для получения достоверных данных необходимо значительное количество объектов (т. е. экспертов), что также затруднительно.
В АЧГАА разработана методика получения достоверных данных о графиках электропотребления от небольшого числа экспертов /41/. Эта методика основана на правиле приведения одной случайной величины к другой. Сущность этого правила заключается в следующем.
Пусть приводимой является случайная величина Y, следовательно необходимо так изменить у1,у2...уm, чтобы Y*' = X*, sy' = sx Y*',sy' - параметры распределения приведенной случайной величины Yу1,у2...уm.
Установлено /$$$/, что i-тые значения до и после приведения связаны между собой соотношением:
, (2.1.1.)
где: - приведенное i-тое значение Yi;
k1, k2 - коэффициенты приведения.
, (2.1.2.)
(2.1.3.)
Что бы случайную величину Y привести к случайной величине Х, имеющей такой же закон распределения,но другие параметры распределения, необходимо i-тые значения случайной величины Y изменить по формуле (2.1.1),вычислив коэффициенты приведения по формулам (2.1.2) и (2.1.3).
В соответствии с описанной методикой было опрошено 7 экспертов, владельцев сельских усадеб с высокой насыщенностью электрооборудования, и получены данные о времени работы i-тых нагрузок. Путем статистической обработки этих данных получены усредненные значения нагрузки в i-тые периоды времени и параметры распределения Р и σp (таблица 2.1.1.).
Рассчитаны среднесуточные значения параметров распределения нагрузки в соответствии с РУМ-10 по следующим формулам и представлены в таблице 2.1.2.
, (2.1.4)
, (2.1.5)
, (2.1.6)
, (2.1.7)
где: , sср- средние за сутки параметры распределения, Вт;
, sсрс - средние за сутки параметры распределения с учетом сезона, Вт.
По (2.1.4.) и (2.1.5.) рассчитаны коэффициенты приведения (таблица 2.1.2.) и приведены значения нагрузки в i - тый период времени (таблица 2.1.3.).Таблица 2.1.1.
Параметры распределения графика нагрузки сельской усадьбы по экспертным данным
Часы суток | Значения нагрузки, Вт | |||
Зима | Весна | Лето | Осень | |
1 | 2 | 3 | 4 | 5 |
0 - 1 1 - 2 2 - 3 3 - 4 4 – 5 5 - 6 6 – 7 7 – 8 8 – 9 9 – 10 10 – 11 11 – 12 12 – 13 13 – 14 14 – 15 15 – 16 16 – 17 | 133 50 50 50 80 180 230 357 944 1307 1307 1121 536 707 936 1157 1179 | 217 100 100 100 125 160 203 354 971 1371 1257 943 429 471 700 1271 1264 | 164 64 50 84 110 110 159 278 1064 1278 1207 893 436 421 650 507 850 | 467 50 50 50 67 124 203 443 864 1207 1250 986 393 721 664 1143 1274 |
Продолжение табл. 2.1.1
1 | 2 | 3 | 4 | 5 |
17 – 18 18 – 19 19 – 20 20 – 21 21 – 22 22 – 23 23 – 24 | 724 746 863 673 373 212 198 | 1264 1356 1183 1173 949 549 246 | 1200 911 1021 578 709 438 203 | 1200 1278 1042 967 596 328 192 |
Таблица 2.1.2.
Параметры распределения нагрузки по данным РУМ - 10Сезон | Коэффициент сезона | Рср, Вт | Бср, Вт | к1 | К2 |
Зима Весна Лето Осень | 1 0,8 0,7 0,9 | 1100 880 770 990 | 535 535 375 482 | 1,25 1,12 0,93 1,08 | 365 98 251 290 |
Таблица 2.1.3.
Параметры графика нагрузки, приведенные к генеральной совокупностиЧасы суток | Значения нагрузки, Вт | |||
Зима | Весна | Лето | Осень | |
1 | 2 | 3 | 4 | 5 |
0 - 1 | 531 | 341 | 404 | 794 |
1 – 2 | 427 | 210 | 312 | 344 |
2 – 3 | 427 | 210 | 297 | 344 |
3 – 4 | 427 | 210 | 329 | 344 |
4 – 5 | 465 | 238 | 353 | 362 |
5 – 6 | 590 | 272 | 353 | 424 |
6 – 7 | 652 | 325 | 399 | 499 |
1 | 2 | 3 | 4 | 5 |
7 - 8 | 811 | 494 | 510 | 768 |
8 – 9 | 1545 | 1185 | 1240 | 1223 |
9 – 10 | 1999 | 1633 | 1440 | 1594 |
10 – 11 | 1999 | 1506 | 1373 | 1640 |
11 – 12 | 1766 | 1154 | 1081 | 1355 |
12 – 13 | 1035 | 578 | 656 | 714 |
13 – 14 | 1249 | 625 | 642 | 1069 |
14 – 15 | 1535 | 882 | 856 | 1007 |
15 – 16 | 1811 | 1521 | 722 | 1524 |
16 – 17 | 1839 | 1514 | 1041 | 1666 |
17 – 18 | 1270 | 1514 | 1367 | 1586 |
18 – 19 | 1298 | 1617 | 1098 | 1670 |
19 – 20 | 1444 | 1423 | 1200 | 1415 |
20 – 21 | 1206 | 1412 | 788 | 1334 |
22 – 23 | 630 | 713 | 658 | 644 |
23 – 24 | 612 | 384 | 440 | 497 |
Как видно из таблицы 2.1.3., параметры распределения приведенной нагрузки совпадают с параметрами генеральной совокупности.
По данным таблицы 2.1.3. построены графики нагрузок на вводе в сельскую усадьбу (лист 4).
... северных регионов за счет возведения двойной оболочки здания с использованием солнечной энергии можно обеспечить до 40% экономии тепла. Учитывая развитие технологий возобновляемой энергетики, с должной долей уверенности можно сказать о реальной возможности создания эффективной системы энергоснабжения удаленных от центральной энергосети сельских домов при условии комбинированного использования ...
... словами можно сказать - BIOS - это набор программ, которые переводят понятные пользователю команды Windows на язык, понятный компьютеру. Если говорить более конкретно о системах ввода информации и распознания текста, стоит рассмотреть Windows XP Tablet PC Edition. Microsoft сопроводила выход новой версии громким девизом: "Новая операционная система с улучшенными возможностями рукописного ввода ...
... комплект генераторов на дизельном топливе можно запустить, синхронизировать и подключить к изолированной сети менее чем за две секунды. Преобразование энергии ветра является альтернативным возобновляемым источником энергии, чтобы заменить дорогостоящее топливо. Новые исследования технической осуществимости проектов использования ветроустановок совместно с дизельгенераторами в изолированных сетях ...
... дешевых подложках; выращивать слои GaAs на удаляемых подложках или подложках многократного использования. Поликристаллические тонкие пленки также весьма перспективны для солнечной энергетики. Чрезвычайно высока способность к поглощению солнечного излучения у диселенида меди и индия (CulnSe2) - 99 % света поглощается в первом микроне этого материала (ширина запрещенной зоны - 1,0 эВ) [4]. ...
0 комментариев