3. ОБОСНОВАНИЕ КОНСТРУКЦИИ

ВЕТРОЭНЕРГЕТИЧЕСКОЙ УСТАНОВКИ

3.1. Выбор типа ветроэнергетической установки


Все ветроэнергетические установки (В-установки) можно классифицировать следующим образом (лист 1).

К В-установкам с вертикальной осью вращения относятся ус­тановки карусельного типа. Наиболее эффективной из них по исполь­зованию энергии ветра является В-установка типа ротора Савониу­са, в которой ветер воспринимается приблизительно 2/3 рабочей по­верхности ветроколеса.

К достоинствам такого типа В-установок относятся:

- простота конструкции;

- не требуется ориентация по ветру;

- для некоторых конструкций (например, ротор Савониуса) до­вольно значительный вращающий момент.

К недостаткам относятся:

- низкая скорость вращения, не более скорости ветра;

- значительная зависимость крутящего момента от скорости ветра.

Так как В-установки с вертикальной осью вращения являются тихоходными, то для привода генератора требуются редукторы с большим передаточным числом. Кроме того, сильно выраженная зависимость их крутящего момента и скорости вращения от скорости ветра тре­буют ряда усовершенствований, увеличивающих их сложность и стои­мость (маховик, шторы для уменьшения потока ветра и т.п.). В этой связи В-установки карусельного типа применяются, в основном, для водоподъема, где не требуется поддержания стабильной скорости вращения.

Ветроэнергетические установки с горизонтальной осью враще­ния, расположенной параллельно ветру, называются В-установками пропеллерного типа и могут быть тихоходными (с числом лопастей более шести) и быстроходными (с числом лопастей до шести). Тихо­ходные установки менее эффективны для выработки электроэнергии, т.к. необходимы редукторы с большим передаточным числом. Поэтому они здесь не рассматриваются.

Быстроходные В-установки пропеллерного типа разделяются по способу расположения ветроколеса: за башней (самоустанавливающие­ся на ветер) и перед башней (требующие устройства установки на ветер). В качестве устройства установки на ветер для маломощных В-установок применяется флюгер. Если рассматривать В-установку в качестве двигателя электрогенератора, то быстроходные установки пропеллерного типа по сравнению с другими обладают следующими преимуществами:

- высокая скорость вращения, что позволяет применять редук­тор с малым передаточным числом или вообще обходиться без редук­тора;

- наиболее высокий к.п.д.;

- наименее выражена зависимость крутящего момента от силы ветра;

- возможность авторегулирования скорости вращения.

К недостаткам В-установок пропеллерного типа можно отнести более сложную конструкцию и значительный гироскопический момент. Однако, современное состояние техники изготовления В-установок пропеллерного типа позволяет значительно упростить расчеты крыла и уменьшить влияние гироскопического момента /18,22 /.

Исходя из изложенного, для привода электрогенератора прини­мается быстроходная В-установка пропеллерного типа. Справедли­вость такого решения подтверждается мировой практикой использова­ния энергии ветра для электроснабжения /18/.


3.2. Обоснование и расчет ветроколеса


Конструктивными параметрами ветроколеса являются число ло­пастей, диаметр, профиль лопасти, угол защемления.

От количества лопастей ветроколеса зависит его номинальная скорость вращения, при которой достигается максимальный к.п.д. /19,43,23/. Чем больше лопастей содержит ветроколесо, тем больше его крутящий номинальный момент, но тем меньше его же но­минальная скорость вращения. Момент на валу генератора от ветро­колеса определяется по формуле /21,46 /:

, (3.2.1.)

где: Мг - момент на валу генератора от ветроколеса, Нм;

Мвт - момент на валу ветроколеса, Нм;

nГН,nВН - номинальные обороты генератора и ветроколеса соответственно, об/мин.

В силу того, что необходимо иметь максимальный момент на ва­лу генератора, а не ветроколеса, то нельзя без расчетов утверж­дать, что ветроколесо с большим количеством лопастей, а значит и с большим крутящим моментом, будет более эффективно, так как при этом уменьшается отношение nГН/nВН.

Крутящие моменты ветроколес зависят от профиля лопасти, ко­торый выбирается исходя из назначения и мощности ветроустановки. Для В-установок малой и средней мощности, приводящих во вращение электрогенераторы, приемлем профиль "Эсперо", и имеются справоч­ные данные об относительных моментах ветроколес с таким профилем лопастей /43/. Под относительным моментом подразумевается отноше­ние момента ветроколеса с конкретным количеством лопастей к мо­менту условного ветроколеса с бесконечным количеством лопастей, при котором крутящий момент принят равным единице /43/. С учетом этого, функция оптимизации будет иметь вид:

(3.2.2.)

где: Мг,Мв - относительные моменты, о.е.

Так как момент зависит от скорости вращения ветроколеса, ко­торая в свою очередь зависит от скорости ветра, то вводится понятие "модуль ветроколеса" /18,43/, который равен:

(3.2.3.)

где: Z - модуль ветроколеса,о.е.;

w - угловая скорость вращения ветроколеса, с-1;

R- радиус ветроколеса, м;

Vв - скорость ветра, м/с.

В таблице 3.2.2. приведены относительные моменты на валу ге­нераторов от ветроколес, работающих в номинальных режимах.

Таблица 3.2.1.

Относительные моменты и модули ветроколес с лопастями "Эсперо".
Параметры Значение параметров при м
2 3 4 6
Vв, м/с 6,5 6,5 6,5 6,5
Мопт, о.е. 0,09 0,12 0,14 0,19
Zном, о.е. 5,0 4,0 3,5 2,5

nВН, об/мин

310 250 220 155
Ммах, о.е. 0,100 0,135

0,150

0,195
Zмах, о.е. 4,40 3,30 3,00 2,30

nВ МАХ,об/мин

275 200 185 140

, о.е.

1,11 1,13 1,07 1,03

, о.е.

1,14 1,21 1,16 1,09

Таблица 3.2.2.

Моменты на валу генераторов от ветроколес

Число

лопастей

Момент на валу генератора(о.е.*10-2) при n0, об/мин

3000 1500 1000 750 600 500 375 300 250
2 0,75 1,5 2,3 3,0 3,8 4,5 6,0 7,5 9,0
3 0,80 1,6 2,4 3,2 4,0 4,8 6,4 8,0 9,6
4 0,82 1,6 2,4 3,2 4,1 4,9 6,5 8,2 9,8
6 0,79 1,6 2,4 3,2 4,0 4,8 6,3 7,9 9,5

Как видно из таблицы 3.2.2., наиболее предпочтительными для всех генераторов являются ветроколеса с числом лопастей от 3 до 6. Но так как ветроколесо с тремя лопастями обладает (см. табл. 3.2.1.) наибольшей перегрузочной способностью (Ммах/Мопт) и наи­большим диапазоном рабочих скоростей (Zном/Zмах), то окончательно принимается ветроколесо с тремя лопастями. Так как номинальные обороты ветроколеса небольшие, то целесообразно применять генера­торы с большим числом пар полюсов р > 3.

Диаметр ветроколеса связан с мощностью ветроэнергетической установки следующей формулой /18,43,45/:

, (3.2.4.)

где: hв, hп - к.п.д. ветроколеса и передачи;

V/ - математическое ожидание скорости ветра в рабочем диапазоне, м/сек.

r - плотность воздуха кг/м3, r = 1,36 кг/м3 / 21 /.

Для трехлопастного ветроколеса hв = 0,45 /43/. К.П.Д. пере­дачи принимаем ηп = 0,98 /21/. Расчет ведем для генератора с nг = 500 об/мин. Рабочий диапазон скоростей ветра 4...16 м/с /38/.

Для этого диапазона Vв = 6,5 м/с, iп = 1,5.

(м)


Принимаем D = 4,0 м.

Внешний вид предлагаемой В-установки показан на листе 6.



Информация о работе «Разработка эффективной системы энергоснабжения на основе ВИЭ»
Раздел: Экономика
Количество знаков с пробелами: 71494
Количество таблиц: 16
Количество изображений: 56

Похожие работы

Скачать
109448
20
7

... северных регионов за счет возведения двойной оболочки здания с использованием солнечной энергии можно обеспечить до 40% экономии тепла. Учитывая развитие технологий возобновляемой энергетики, с должной долей уверенности можно сказать о реальной возможности создания эффективной системы энергоснабжения удаленных от центральной энергосети сельских домов при условии комбинированного использования ...

Скачать
36657
0
1

... словами можно сказать - BIOS - это набор программ, которые переводят понятные пользователю команды Windows на язык, понятный компьютеру. Если говорить более конкретно о системах ввода информации и распознания текста, стоит рассмотреть Windows XP Tablet PC Edition. Microsoft сопроводила выход новой версии громким девизом: "Новая операционная система с улучшенными возможностями рукописного ввода ...

Скачать
40179
0
2

... комплект генераторов на дизельном топливе можно запустить, синхронизировать и подключить к изолированной сети менее чем за две секунды. Преобразование энергии ветра является альтернативным возобновляемым источником энергии, чтобы заменить дорогостоящее топливо. Новые исследования технической осуществимости проектов использования ветроустановок совместно с дизельгенераторами в изолированных сетях ...

Скачать
74799
3
1

... дешевых подложках; выращивать слои GaAs на удаляемых подлож­ках или подложках многократного использования. Поликристаллические тонкие пленки также весьма перс­пективны для солнечной энергетики. Чрезвычайно высока способность к поглощению солнечного из­лучения у диселенида меди и индия (CulnSe2) - 99 % света погло­щается в первом микроне этого материала (ширина запрещенной зоны - 1,0 эВ) [4]. ...

0 комментариев


Наверх