7.6. НИТРИТЫ

7.6.1. Фотометрический метод с N-(1-нафтил)-этилендиамин дигидрохлоридом и сульфамиламидом

 

Сущность метода. При pH=2-2,5 азотистая кислота образует с сульфаниламидом диазониевое соединение:

 

 

 

Последнее вступает в реакцию сочетания с N-( 1-нафтил) -этилендиаминдигидрохлоридом с образованием азокрасителя пурпурного цвета:

 

Интенсивность окраски возрастает по закону Бера в границах от 3 до 180 мкг/л в расчете на азот (или от 10 до 600 мкг/л в рас­чете на нитрит-ионы) при толщине слоя жидкости в кювете 1 см и  = 543 нм. Метод очень чувствителен:  = 4,6•104.

Мешающие вещества. Одновременное присутствие сильных окислителей (например, активного хлора) и нитрит-ионов исключено, так как они вступили бы в реакцию друг с другом. Реакции обра­зования окрашенного соединения мешают ионы сурьмы, висмута, железа (III) , свинца, ртути, но это предусмотрено в ходе опреде­ления: ионы указанных металлов образуют осадки гидроксидов при нейтрализации раствора до рН = 7 и отделяются фильтрованием через мембранный фильтр. В присутствии ионов меди могут полу­читься пониженные результаты вследствие каталитического уско­рения этими ионами процесса разложения диазотированного сое­динения.

Поскольку при хранении пробы возможно бактериальное прев­ращение нитритов в нитраты или в аммиак, определение нитритов надо проводить как можно скорее после отбора пробы.

На 1-2 дня можно пробу консервировать добавлением 40 мг/л HgCl2 и хранением в это время при 4°С.

Ни в коем случае не следует с целью консервирования вносить кислоту.

Реактивы

Дистиллированная вода. Если имеется сомнение в том, что используемая дистиллированная вода не содержит нитритов, ее следует вновь перегнать, под­щелочив едкой щелочью и внеся кристаллик перманганата калия.

Сульфаниламидный реактив. Растворяют 5 г сульфаниламида в смеси 50 мл концентрированной НС1 и 300 мл дистиллированной воды и разбавляют ди­стиллированной водой до 500 мл. Раствор устойчив в течение нескольких ме­сяцев.

Раствор N-(1-нафтил)-этилендиаминдигидрохлорида. Растворяют 500 мг пре­парата в 500 мл дистиллированной воды. Хранят в склянке из темного стекла. Раствор можно хранить 1 месяц, но если ранее этого времени появилось тем­но-коричневое окрашивание, следует приготовить свежий раствор.

Стандартный раствор нитрита натрия. Основной раствор. Растворяют 0,1500 г NaNO2 чда, высушенного при 105°С, в дистиллированной воде и до­водят водой до 1000 .мл. Раствор консервируют добавлением 1 мл хлороформа н сохраняют в холодном месте; он устойчив 1 месяц. В 1 мл этого раствора содержится 100 мкг .

Рабочий раствор 1. Разбавляют 100 мл основного раствора дистил­лированной водой до 1 л. Раствор должен быть свежеприготовленным. В 1 мл этого раствора содержится 10 мкг .

Рабочий раствор II. Разбавляют 50 мл рабочего раствора 1 дистил­лированной водой до 1 л. Раствор должен быть свежеприготовленным. В 1 мл этого раствора содержится 0.5 мкг .

Соляная кислота, разбавленная 1 :3.

Ход определения. Анализируемую воду нейтрализуют до рН = 7 и, если появится осадок или муть, фильтруют через мемб­ранный фильтр № 1 (разбавление пробы учитывают при расчете результата определения). В коническую колбу вместимостью 100 мл помещают 25 мл анализируемой воды (или фильтрата после отделения осадка, или меньший объем, но разбавленный дистил­лированной водой до 25 мл). В отобранном объеме должно быть от 0,25 до 15 мкг . Прибавляют 1 мл раствора сульфаниламида и перемешивают. Дают пройти реакции в течение 2-8 мин и при­бавляют 1 мл раствора N-(1-нафтил)-этилендиамингидрохлорида, перемешивают, дают постоять от 10 мин до 2 ч (не больше) и из­меряют оптическую плотность при  = 543 им в кюветах с толщи­ной слоя жидкости 1 или 5 см в зависимости от концентрации. Одновременно проводят холостой опыт с 25 мл дистиллированной воды и подученный в холостом опыте раствор используют в качестве сравнительного раствора при измерении оптической плот­ности.

Результат определения находят по калибровочному графику, для построения которого вводят в мерные колбы вместимостью 50 мл 0; 1; 2; 4, ..., 30 мл стандартного рабочего раствора 11 нит­рита натрия, разбавляют каждый раствор до метки дистиллирован­ной водой, перемешивают, отбирают по 25 мл каждого получен­ного раствора н продолжают, как при анализе пробы. По резуль­тата** измерений строят калибровочный график пли, что луч­ше. Два графика: один для определения малых концентраций с расстоянием между стенками кюветы 5 см, другой - с расстоя­нием 1 см.

 

7.6.2. Фотометрический метод с сульфаниловой кислотой и -нафтиламином

 

Сущность метода. Метод аналогичен предыдущему методу, Сульфаниловая кислота реагирует с азотистой кислотой с обра­зованием соответствующего диазосоединения, которое сочетается с а-нафтиламином, образуя азокраситель, имеющий пурпурную окраску:

 

Интенсивность окраски возрастает по закону Бера в границах от 10 до 600 мкг/л в расчете на  (от 3 до 180 мкг/л в расчете на азот) при толщине слоя жидкости в кювете 1 см, =530 им. Молярный коэффициент поглощения = 3,3•104.

Некоторым недостатком метода по сравнению с методом 7.6.1 является применение токсичного реактива -нафтиламина. Следует остерегаться всасывания жидкости ртом при наборе ее в пипетку. Надо избегать также соприкосновения реактива с кожей рук.

Мешающие вещества. Определению мешают те же вещества, какие мешают при использовании метода 7.6.1.

Реактивы.

Сульфаниловая кислота, раствор. Растворяют 600 мг сульфаниловои кис­лоты в 70 мл горячей дистиллированной воды, охлаждают, прибавляют 20 мл концентрированной соляной кислоты, разбавляют до 100 мл дистиллированной водой и тщательно перемешивают.

Гидрохлорид -нафтиламина, раствор. Смешивают 600 мг гидрохлорида -нафтиламина с 1 мл концентрированной соляной кислоты (или 480 мг осно­вания -нафтиламина смешивают с 1,4 мл соляной кислоты) и разбавляют дистиллированной водой до 100 мл.

Ацетат натрия, 2 М раствор. Растворяют 27,2 г CH3COONa•H2O в ди­стиллированной воде, раствор фильтруют, если надо, и разбавляют водой до 100 мл.

Стандартные растворы нитрита натрия - см. метод 7.6.1.

Ход определения. Анализируемую воду нейтрализуют до рН = 7 и, если появится осадок или муть, фильтруют через мембранный фильтр № 1 (разбавление учитывают при расчете результата оп­ределения) .

В коническую колбу вместимостью 100 мл помещают 50 мл анализируемой воды (или фильтрата после отделения осадка, или меньший объем, но разбавленный до 50 мл дистиллированной во­дой). В отобранном объеме должно быть от 0,6 до 30 мкг . Прибавляют 1,0 мл раствора сильфаниловой кислоты и тщательно перемешивают. Значение рН полученной смеси должно быть около 1,4. Дают постоять от 3 до 10 мин, затем приливают 1,0 мл растворра -нафтиламина, 1,0 мл раствора ацетата натрия и перемешивают. Полученный окрашенный раствор должен иметь рН от 2,0 до 2,5. Через 10-30 мин определяют его оптическую плотность при = 530 им в кюветах с толщиной слоя жидкости 1 или 5 см в зависимости от концентрации. Одновременно проводят холостой опыт с 50 мл дистиллированной воды и полученный в холостом опы­те раствор используют в качестве сравнительного раствора при измерении оптической плотности.

Результат определения находят по калибровочному графику, для построения которого вводят мерные колбы вместимостью 50 мл 0; 1; 2, ..., 30 мл стандартного рабочего раствора II, разбавляют каждый раствор до метки дистиллированной водой и перемешивают. Далее продолжают, как при анализе пробы. По результатам измерения оптических плотностей строят калибровочный график или, что лучше, два графика: один, для определения самых малых концентраций, с расстоянием между стенками кюветы 5 см, другой - с расстоянием 1 см.

 

Ионы аммония и аммиака.

Ионы аммония и аммиак появляются в грунтовых водах в ре­зультате жизнедеятельности микроорганизмов. Так же объясняется присутствие их в питьевых водах, если эти вещества не прибавляли в смеси с хлором при водоподготовке. В поверхностных водах аммиак появляется в небольших количествах, обыкновенно в период веге­тации, в результате разложения белковых веществ. В анаэробной среде аммиак образуется при восстановлении органических веществ. Вследствие жизнедеятельности нитрифицирующих бактерий содер­жание аммиака в водоемах снижается при одновременном образова­нии нитратов. Повышенное содержание аммиака в поверхностных водах объясняется спуском в них бытовых сточных вод и некоторых промышленных вод, содержащих значительные количества аммиака или солей аммония, являющихся отходами производства.

Отношение концентраций свободного аммиака (NH3) и ионов аммония (NH+4) зависит от концентрации водородных ионов. Концен­трации отдельных форм можно определить расчетом.

Для определения аммиака приводится метод непосредственного колориметрического определения в питьевых и поверхностных водах с реактивом Несслера и метод отгонки с колориметрическим или объемным окончанием в зависимости от концентрации аммиака в пробе (определение в поверхностных и особенно в сточных водах). Если пробы для определения аммиака взяты не сразу же после отбора, их консервируют прибавлением 1 мл концентрированной серной кислоты или 2-4 мл хлороформа на 1 л пробы.

Полученные результаты выражают в мг-экв или в мг-ион NH+4/л воды: 1 мг NH+4 = 0,05544 мг-эке NH+4; 1 мг-экв NH+4= 18,04 мг NH+4.

 

Качественное определение.

 

К 10 мл пробы прибавляют несколько кристалликов сегнетовой соли и 0,5 мл реактива Несслера. Желтое окрашивание раствора, помутнение или выпадение желто-коричневого осадка указывает на присутствие аммиака. В присутствии повышенного количества органических веществ, особенно гуминовых кислот, вызывающих усиление коричневой окраски после подщелачивания, необходимо провести холостой опыт, добавив сегнетову соль и 0,5 мл 15%-нога раствора едкого натра.

 

Колориметрическое определение с реактивом Несслера.

 

Аммиак реагирует в щелочной среде с иодомеркуриатом калия, образуя осадок желто-коричневого цвета. При низкой концентрации аммиака получается коллоидный раствор, пригодный для колориме­трического определения.

Низший предел определения равен 0,05 мг NH+4 в 1 л. Без раз­бавления можно определять не более 4 мг NH+4 в 1 л воды.

Мешающие влияния. Определению мешают амины, хлорамины, ацетон, альдегиды, спирты и некоторые другие органические со­единения, реагирующие с реактивом Несслера. В их присутствии проводят определение аммиака с отгонкой.

Определению мешают компоненты, обусловливающие жесткость воды, железо, сульфиды, хлор, а также мутность.

Мешающее влияние жесткости воды устраняют прибавлением раствора сегнетовой соли или комплексона III.

Большое количество железа, сульфиды и муть удаляются при осветлении воды цинковой солью. К 100 мл пробы прибавляют 1 мл раствора сульфата цинка (100 г ZnSO4 H2O ч. д. а, растворяют в бидистилляте и разбавляют до 1 л) и смесь тщательно перемеши­вают. Затем рН смеси доводят до 10,5 добавлением 25%-наго рас­твора едкого кали или едкого натра. Проверяют рН стеклянным электродом. После взбалтывания и образования хлопьев осадок отделяют центрифугированием или фильтрованием через стеклян­ный фильтр. Увеличение объема жидкости необходимо учесть при расчете.

Мешающее влияние хлора устраняют добавлением раствора тио­сульфата или арсенита натрия (растворяют в бидистилляте 3,5 г Na2S2O3•5H2O ч. д. а, или 1,0 г Na3AsO3 ч. д. а, и доводят до 1 л). Для удаления 0,5 мг хлора достаточно прибавить 1 мл одного из указанных растворов.

 

Аппаратура

 

Фотометр с фиолетовым светофильтром ( = 400-425 нм). Кюветы с толщиной слоя 1-5 см или набор цилиндров Несслера емкостью 50 мл.

 

Реактивы

 

Бидистиллят безаммиачный. Устраняют следы аммиака в бидистилляте филь­трованием через катионит в H+-форме.

Реактия Несслера. Растворяют 100 г HgI2 ч. д. а, и 70 г KI ч.д.а, в небольшом количестве бидистиллята и смешивают с раствором едкого натра, приготовленным растворением 160 г NaOH ч. д. а, в 500 мл дистиллированной воды. Смесь доводят бидистиллятом до 1 л. Применяется прозрачный раствор после отстаивания в тече­ние по крайней мере 4 ч.

Тартрат натрия и калия (сегнетова соль), 50%-ный раствор. Растворяют 50 г KNaC4H4O6• 4Н2


Информация о работе «Анализ азота и его соединений»
Раздел: Химия
Количество знаков с пробелами: 116208
Количество таблиц: 7
Количество изображений: 6

Похожие работы

Скачать
229328
20
9

... разовая) – 0,01%. 4 Содержание Введение......................................................................................................................4 Глава 1. Межпредметные связи в курсе школьного предмета химии на примере углерода и его соединений.......................................................................5 1.1 Использование межпредметных связей для формирования у учащихся ...

Скачать
44348
0
1

... в процессе его производства. Первая стадия производства титана заключается в рудно-восстановительной плавке, которая проводится с целью обогащения исходного материала окисными соединениями титана. Во всех последующих стадиях производства взаимодействие титана и его соединений с кислородом нежелательно. Титан растворяет такие элементы, как азот, водород и углерод. С последним он образует стойкие ...

Скачать
64057
6
3

... среды.   3.1 Урок по теме «Кальций и его соединения» в 9-ом классе с. Карасу, позволяющий развить экологическое сознание школьников   Цель урока: познакомить учащихся с основными способами получения кальция и его соединений, возможностями применения соединений кальция, показать необходимость контроля содержания ионов кальция и магния в питьевых и сточных водах и обозначить значимость кальция ...

Скачать
32356
7
2

... разделам школьной программе по химии, тем более, что в учебнике этот материал, по-моему, незаслуженно отсутствует. Данная работа посвящена изучению основных физических и химических свойств хрома и его соединений, позволяет оценить важность этого химического элемента. 1.Исторические сведения В 1766 году петербургский профессор химии И.Г.Леман описал новый минерал, найденный на Урале на ...

0 комментариев


Наверх