Г.Г. Забудский, Институт информационных технологий и прикладной математики СО РАН

1. Постановка задачи и определения

Задачи оптимального размещения объектов имеют много практических приложений. Описываются различные постановки таких задач [1-8]. В данной статье рассматривается известная NP-трудная задача оптимального размещения на графе - задача о p-медиане [1,7-8]. Для ее исследования здесь применяется подход, развиваемый в работах А.А. Колоколова и других [2,4-7,9] для анализа и решения задач целочисленного программирования, основанный на разбиении допустимой области соответствующей непрерывной задачи. В данной работе рассматривается L- разбиение.

Задача о p-медиане сводится к простейшей задаче размещения (ПЗР). Сводимость не гарантирует сохранения некоторых свойств. Например, многогранник ПЗР - квазицелочисленный, а многогранник задачи о p- медиане в общем случае является только связноцелочисленным (квазицелочисленным при p = 1, n-1, где n - число вершин графа) [1].

В работе [2] доказано, что многогранник ПЗР имеет альтернирующую L-структуру. В данной статье показано, что многогранник задачи о p-медиане также имеет альтернирующую L -структуру.

Рассматривается целочисленная модель задачи о p- медиане:

Некоторые свойства многогранника. Задачи о P-медиане

(1)

где n - количество вершин графа; dij - кратчайшее расстояние между i-й и j- й вершинами графа; p- количество размещаемых объектов. Диагональными будем называть элементы вектора x = (x11,x12,...,xnn) с одинаковыми индексами, а медианными - диагональные, принимающие значение 1. Переменная xij = 1, если вершина j"прикреплена" к вершине i. Условия (4) гарантируют прикрепление только к медианным вершинам. Если условия (5) заменить линейными неравенствами

Некоторые свойства многогранника. Задачи о P-медиане

(2)

то ограничения (2)-(4),(6) задают многогранник в пространстве размерности n2. Обозначим его через Mp.

Введем определение L-разбиения . Пусть Zk- множество всех k-мерных целочисленных векторов. Тогда L-разбиение непустого множества Rk определим следующим образом:

1) каждая точка zZk образует отдельный класс;

2) нецелочисленные точки x и y эквивалентны, если (x) = (y) и [xi=yi, i =1,...,(x)-1, [x(x)] = [x(x)] , где(x) - номер первой дробной, [a] - наибольшее целое число, не превосходящее a.

В выпуклых множествах с альтернирующим L-разбиением дробныеи целочисленные классы чередуются. В работе [9] предложен критерий альтернируемости L-разбиения:выпуклое замкнутое множество Rk имеет альтернирующее разбиение тогда и только тогда, когда для любого дробного L-класса V существуют целочисленные точки z1,z2    Zk ( называемые окаймляющими) такие, что для любого x  V z1j = z2j = xj, j =1,...,(x)-1; z2j = [xj]; j = (x); z1j = ]xj[;  j = (x),

где ]a[ - верхняя целая часть числа a. Ясно, что Некоторые свойства многогранника. Задачи о P-медианезнак лексикографического сравнения.

2. Структура L-разбиения

Исследуем структуру L-разбиения многогранника Mp.

ТЕОРЕМА. Для произвольного упорядочения переменных многогранник Mp имеет альтернирующую L-структуру .

Доказательство. Воспользуемся критерием альтернируемости L-структуры. Возьмем произвольный дробный xMp. Обозначим через  произвольную перестановку n2 индексов вектора x, т.е. пар чисел от 1 до n. Тогда (i,j) - номер пары (i,j) в перестановке  .Рассмотрим два случая.

1. Пусть первая дробная в векторе x  Mp - диагональная, т.е. (x) = (i,i) и Некоторые свойства многогранника. Задачи о P-медиане Отметим, что qZ, qp, а тогда q+1 p. Построим вектор z1  Mp Zn2, и Некоторые свойства многогранника. Задачи о P-медиане. Возможны варианты.

1.1. q+1 = p. Для каждого j такого, что найдется kj такой, что 0xkj1 построим множество Jj ={k|xkk = 1}. Покажем, что Jj.

Действительно, пусть нашелся j, для которого Jj=, тогда Некоторые свойства многогранника. Задачи о P-медианеа так как xkjxkk для любых k и j, имеем Некоторые свойства многогранника. Задачи о P-медианеа из условия Некоторые свойства многогранника. Задачи о P-медианеполучаем 0 xij1 и тогда iJj, что противоречит тому, что Jj=.

Вектор z1 строим следующим образом: Некоторые свойства многогранника. Задачи о P-медиане

Нетрудно проверить, что Некоторые свойства многогранника. Задачи о P-медиане.


Информация о работе «Некоторые свойства многогранника. Задачи о P-медиане»
Раздел: Математика
Количество знаков с пробелами: 8963
Количество таблиц: 2
Количество изображений: 3

Похожие работы

Скачать
94255
14
23

... подобраны опорные задачи, которые можно использовать на уроке при изучении данной темы. Таким образом, в данной работе были рассмотрены основные, общие моменты изучения многогранников в школьном курсе стереометрии. В следствие чего дальнейшие исследования могут проходить в направлении более детального изучения отдельных разделов данной темы, а также пропедевтического введения многогранников в ...

Скачать
147329
8
14

... учебник и задачник / А. П. Кисилев, Н.А. Рыбкин. – М.: Дрофа, 1995. 9.   Изучение личности школьника / под. ред. Л.И. Белозеровой. – Киров, Информационный центр, 1991. 10.             Коновалова, В.С. Решение задач на построение в курсе геометрии как средство развития логического мышления / В.С. Коновалова, З.В. Шилова // Познание процессов обучения физике: сборник статей. Вып.9. – Киров: Изд-во ...

Скачать
9008
9
0

... V' становится исходным L - классом. Если не существует соседнего дробного L-класса, то либо мы получаем оптимум задачи БП, либо приходим к выводу, что задача не имеет решения. Процесс является конечным, так как M ограничено. Опишем алгоритм перебора L - классов. Для простоты номер итерации будем опускать. Шаг 0. Решаем исходную задачу ЛП. Если она не имеет решения или ее решение целочисленное, ...

Скачать
49224
0
30

... На вспомогательном луче l, проведенном через точку А, построим отрезки АХ1=pe и АС1= qe. Дальнейшие построения сделаны, как в пункте а). Они понятны из рисунка 16, в. Основными способами решения задач построения на изображениях плоских фигур являются: 1.    Способ выносных чертежей. 2.    Вычислительный способ. 3.    Геометрический способ. Задача 4. Параллелограмм АВСD является изображением ...

0 комментариев


Наверх