2.3 x < 3
2.4 x < 2
2.5 Пусть [ x ] = t , тогда данное неравенство равносильно системе
3
Ответ : [ 3; 6 ).
2.6 Пусть [ x ] = t , тогда получим .
Ответ : (-.
Пример 4.
Постройте график функции y = [ x ]
Решение
1). ООФ: х R
2). МЗФ: y Z
3). Т.к. при х О [ m ; m + 1), где m О Z , [ x ] = m, то и y = m, т.е. график представляет совокупность бесконечного множества горизонтальных отрезков, из которых исключены их правые концы. Например, х О [ -1 ; 0 ) Ю [ x ] = -1 Ю y = - 1 ; x О [ 0; 1) Ю [ x ] = 0 Ю y = 0.
Примечание.
1. Имеем пример функции, которая задается разными аналитическими выражениями на разных участках.
2. Кружочками отмечены точки, не принадлежащие графику.
Определение 2.
Дробной частью действительного числа х называется разность х – [ x ]. Дробная часть числа х обозначается символом { x }.
Пример.
Вычислить { x }, если х принимает значение : 2,37 ; -4 ; 3,14 . . .; 5 .
Решение
{ 2,37 } = 0,37 , т.к. { 2,37 } = 2,37- [ 2,37 ] = 2,37 – 2 = 0,37.
, т.к.
{ 3,14…} = 0,14… , т.к. { 3,14…} = 3,14…-[ 3,14…] = 3,14…-3= 0,14…
{ 5 } = 0 , т.к. { 5 } = 5 – [ 5 ] = 5 – 5 = 0.
Свойства дробной части действительного числа.
1°. { x } = x – [ x ]
2°. 0 { x } < 1
3°. { x + m } = { x }, где m О Z
4°. { x } = x , если х О [ 0 ; 1)
5° Если { x } = а , a О [ 0 ; 1), то х =а +m, где m О Z
6°. { x } = 0 , если х О Z.
Рассмотрим примеры применения понятия { x } в различных упражнениях.
Пример 1.
Решить уравнения:
1.1 { x } = 0,1
1.2 { x } = -0,7
{ x } = 2,5
{ x + 3 } = 3,2
{ x } - { x } +
Решение
По 5° решением будет множество
х = 0,1 + m , m О Z
1.2 По 2° уравнение не имеет корней, х О Ж
1.3 По 2° уравнение не имеет корней, х О Ж
По 3° уравнение равносильно уравнению
{ x }+ 3 = 3,2 Ю { x } = 0,2 Ю x = 0,2 + m , m О Z
1.5 Уравнение равносильно совокупности двух уравнений
Ответ: х=
х=
Пример 2.
Решить неравенства:
2.1 { x } 0,4
2.2 { x } 0
{ x + 4 } < 4,7
{ x }-0,7 { x } + 0,2 > 0
Решение
2.1 По 5° : 0,4 + m x < 1 + m, где m О Z
... мест. Методы Коши получили всеобщее распрастранение, применялись оттачивались весь XIX век. Идеи и методы Коши плодотворно пользуются и обобщаются современными математиками и сегодня. 4 Создание теории действительного числа После «наведения порядка» в математическом анализе встал вопрос о ситуации в арифметике. «К необходимости разработки теории действительных чисел приводили многие задачи ...
... что если уравнение (25) имеет хотя бы одно решение, то оно имеет их бесчисленное множество. Нельзя, конечно, утверждать, что формулами (31) даются все решения уравнения (25). В теории алгебраических чисел доказывается, что все решения уравнения (25) в целых числах можно получить, взяв некоторое конечное и определенное зависящее от и число решений этого уравнения и размножив их с помощью формул ...
... случаи? Как записать формулу решения в виде дроби? При этом можно рассмотреть и сокращение дроби, когда числитель и знаменатель представляют произведение. Перейдем теперь к изложению той методики преподавания умножения на дробь, которая получила в настоящее время признание в педагогической практике и в учебно-методической литературе. Можно подвести учащихся к новому определению умножения путем ...
... , сколько времени потребуется для его составления, как много места для возможных ошибок? Естественно, об этом задумывались и авторы языков программирования. Поэтому во всех существующих языках имеются типы переменных, отвечающие за хранение больших массивов данных. В языке Паскаль они так и называются: "массивы". Массивом будем называть упорядоченную последовательность данных одного типа, ...
0 комментариев