Для колеса
, (13)
=428 МПа.
Для непрямозубых колёс расчётное допускаемое контактное напряжение определяется по формуле
, (14)
[σH]=0,45·([482 +428]) = 410 МПа.
Требуемое условие выполнено.
(Для прямозубых передач [σH]= [σH2])
Определяем межосевое расстояние.
Межосевое расстояние из условия контактной выносливости определяется по формуле
, (15)
где Ka– коэффициент для косозубой передачи, Ka=43 , [1, с. 32], (Для прямозубых Ka=49,5);
U1 – передаточное число редуктора, U1=3,15, (ПЗ, задание);
М2– вращающий момент на ведомом валу, М2=156,2 Н·м, (ПЗ, табл.1);
КНВ – коэффициент, учитывающий неравномерность распределения
нагрузки, КНВ=1 , [1, с.32];
[σH] – допускаемое контактное напряжение, [σH]=410MПа ;
ψba – коэффициент ширины венца, ψba=0,4, (ПЗ, задание).
аω= 43·(3,15+1)·=110 мм.
В первом ряду значений межосевых расстояний по ГОСТ 2185-66 выбираем ближайшее и принимаем аω=125 мм, [1, с. 36].
Определяем модуль передачи
Нормальный модуль зацепления принимают по следующей рекомендации:
мм.
Принимаем по ГОСТ 9563-60, =2 мм, [1, с. 36]. (В силовых передачах ≥1,5 мм.)
Определяем угол наклона зубьев и суммарное число зубьев
Принимаем предварительно угол наклона зубьев β=9º, (ПЗ, задание) и определяем суммарное число зубьев
, (16)
где – межосевое расстояние,=125 мм ;
– нормальный модуль зацепления, =2 мм.
Z∑ ==123,39.
Принимаем Z∑=123.
Определяем числа зубьев шестерни и колеса.
Число зубьев шестерни равно:
, (17)
где U1 – передаточное число редуктора, U1=3,15;
Z∑= 123 – суммарное число зубьев, Z∑= 123.
==29,64.
Принимаем =30.
Определяем число зубьев колеса:
Z2= Z∑ -Z1, (18)
Z2=123-30=93.
Уточняем передаточное число
(19)
где Z1 – число зубьев шестерни, Z1=30;
Z2 – число зубьев колеса, Z2=93.
U1ф=3,1.
Уточняем угол наклона зубьев:
, (20)
где mn– модуль передачи, mn=2 мм;
аω – межосевое расстояние, аω=125 мм.
cos β ==0,984.
Принимаем β=10º26'.
Определяем диаметры колес и их ширину.
Делительный диаметр шестерни:
, (21)
где mn – модуль передачи, mn=2 мм;
Z1– число зубьев шестерни, Z1=30;
– косинус угла наклона зубьев, =0,984.
d1=60,98 мм
Делительный диаметр колеса:
, (22)
где Z2– число зубьев колеса, Z2= 93 .
d2= =189,02 мм
Проверяем межосевое расстояние:
aw= мм
Определим диаметры вершин зубьев:
, (23)
da1=60,98 +2·2=64,98 мм;
da2=189,02 +2·2=193,02 мм.
Определим диаметры впадин зубьев:
df1 = d1 -2,5 mn.
df1 =60,98-2,5·2=55,98 мм;
df2=189,02-2,5·2=184,02 мм.
Определяем ширину колеса:
, (24)
где – коэффициент ширины венца, =0,4;
аω– межосевое расстояние, аω=125 мм.
b2=0,4·125=50 мм.
Определяем ширину шестерни:
, (25)
b1=50+5=55 мм.
Определяем коэффициент ширины шестерни по диаметру:
, (26)
ψba=.
Определяем окружные скорости и значения степени точности изготовления шестерни и колеса.
υ= , (27)
где n1– частота вращения шестерни,
n1=967 об/мин, (ПЗ, п.1);
d1 – делительный диаметр шестерни, d1=60,98 мм .
υ ==3,09 м/с.
При такой скорости для косозубых колес принимаем 8-ю степень точности, [1, с. 32].
Определяем коэффициент нагрузки, проверяем зубья на контактное напряжение
, (28)
где KHB – коэффициент, учитывающий неравномерность
распределения нагрузки по ширине венца, KHB=1 ,[1, табл. 3.5];
KHα- коэффициент, учитывающий неравномерность
распределения нагрузки между зубьями, KHα=1,12, [1, табл. 3.5];
KHV – динамический коэффициент, KHV=1,1, [1, табл. 3.6].
Кн=1·1,12·1,1=1,23.
Проверяем зубья на контактные напряжения:
(29)
где aω – межосевое расстояние, aω=125 мм;
M2 – передаваемый момент, M2=156,2 Н·м, (ПЗ, п.1);
b2 -ширина колеса, b2=50 мм;
U1 – передаточное число редуктора, U1=3,1;
270-коэффициент для непрямозубых колес (для прямозубых зубчатых передач 310)
σH==352,81МПа<=410 МПа.
<.
Определяем силы, действующие в зацеплении.
Определяем окружную силу:
Ft=, (30)
где M1– вращающий момент на валу шестерни, M1= 52,2 H·м;
d1– делительный диаметр шестерни, d1=60,98 мм .
Ft= = 1712 Н
Определяем радиальную силу:
, (31)
где - угол зацепления в нормальном сечении, = 20° , [1, с. 29];
- угол наклона зубьев, = 10° 26´ .
Fr= =633 Н
Определяем осевую силу:
, (32)
Fa=1712·tg10º26´=295 Н.
(Для прямозубых и шевронных передач Fa=0)
Полученные данные приведем в таблице.
Таблица 2
Наименование параметров и единица измерения | Обозначение параметров и числовое значение |
Материал, вид термической обработки, твердость: шестерни колеса Допускаемое контактное напряжение, МПа: шестерни колеса Расчетное допускаемое контактное напряжение, МПа Межосевое расстояние, мм Нормальный модуль зацепления, мм Суммарное число зубьев Число зубьев: шестерни колеса Угол наклона зубьев Передаточное число редуктора Делительный диаметр, мм: шестерни колеса Диаметр вершин зубьев, мм шестерни колеса Диаметр впадин зубьев, мм шестерни колеса |
Продолжение таблицы 2
Наименование параметров и единица измерения | Обозначение параметров и числовое значение |
Ширина, мм шестерни колеса Коэффициент ширины шестерни по диаметру Окружная скорость, м/c Степень точности изготовления Коэффициент нагрузки Окружная сила, Н Радиальная сила, Н Осевая сила, Н | b1=55 b2=50 ψba=1,23 υ=3,09 8 KH=1,123 Ft=1712 Fr=633 Fa=295 |
Методические указания
Разница твердости зубьев шестерен и колеса для прямозубых передач 2530 HB, для косозубых передач и шевронных 3050 HB.
Фактическое передаточное число должно отличаться от заданного не более чем на 3%.
Значения межосевого расстояния и нормального модуля рекомендуется выбирать из первого ряда. Угол наклона зубьев рассчитать с точностью до одной минуты, а для этого cosβ рассчитать до пятого знака после запятой.
Диаметры шестерни и колеса рассчитать с точностью до сотых долей мм. Ширину зубчатых колес округлить до целого числа. Окружная скорость для прямозубой передачи должна быть не более 5м/с. Контактные напряжения, возникающие в зацеплении должны быть в пределе до 5% -перегрузка и до 20% недогрузка.
3 Предварительный расчет валов, подбор муфтыРасчет выполняем на кручение по пониженным допускаемым напряжениям, с учетом действия на вал изгибающего момента.
Ведущий вал:
Диаметр выходного конца при допускаемом напряжении [τк]=20 МПа вычисляется мо формуле:
, (33)
где Mк1– крутящий момент на ведущем валу, Mк1=50,39 Н·м, (ПЗ, табл. 1);
[τк]– допускаемое напряжение на кручение, [τк]=20 МПа, [1, с. 160].
dв1==23,7 мм.
Принимаем dв1=32 мм из стандартного ряда [1, с.162].
Так как вал редуктора соединен муфтой с валом электродвигателя, то необходимо согласовать диаметры вала двигателя dдв и вала dв1. У подобранного электродвигателя диаметр вала dдв=38 мм, [1,с391. табл.П2] . Выбираем муфту упругую втулочно-пальцевую МУВП по ГОСТ 21424-75 , с допускаемым моментом [T]=125Н·М, d=28 мм, длина полумуфты на вал редуктора
ℓм =60мм,[1,с.277] расточкой полумуфты под вал двигателя dдв=38 мм и
dв1=32 мм, [1, с277].
Принимаем диаметр вала под подшипники dп1=40 мм, диаметр буртика dб1=45 мм. Шестерню выполняем за одно целое с валом.
Рисунок 2 - Конструкция ведущего вала
Ведомый вал:
Принимаем материал вала сталь 45, термическая обработка улучшение, твердость HB 16…170
Учитывая влияние изгиба вала от натяжения цепи, принимаем [τк2]=16 МПа.
Диаметр выходного конца вала:
, (34)
где Мк2=156,2 Н·м – крутящий момент на ведомом валу, (ПЗ, табл.1).
dв2 = = 36,7мм.
Принимаем ближайшее значение из стандартного ряда: dв2=38 мм. Принимаем под подшипниками диаметр вала dп2=45 мм. Принимаем диаметр вала под зубчатым колесом dk2=50 мм, диаметр буртика dб2=55 мм.
Рисунок 3 - Конструкция ведомого вала
[1,с161162, 296297].
Методические указания
Допускаемое напряжение на кручение принимать с учетом действия напряжений изгиба и условий работы вала в интервале
[τк]=15
... ωi– угловая скорость рассматриваемого вала, рад/с. Результаты расчетов этого раздела являются исходными данными для дальнейших расчетов элементов привода. 4. Выбор стандартного редуктора По каталогу выбираем цилиндрический одноступенчатый редуктор ЦУ-160-3,15-33У2 ГОСТ21425-75, параметры заносим в таблицу 5.1. Таблица 4.1 Тип Передаточное число Номинальный момент, Нм ...
... цепного конвейера приведена на рис.2. Вращение привода передается от электродвигателя 1 ведущим звездочкам цепного конвейера 8 посредством клиноременной передачи 2, муфт 3 и 5, косозубого одноступенчатого редуктора 4, цепной передачи 6 и зубчатой открытой прямозубой передачи 7. При этом на кинематической схеме римскими цифрами обозначены тихоходные (I, III, VI) и быстроходные (II, IV, V) валы ...
... u ≤ 63. Выбор горизонтальной или вертикальной схемы для редуктора всех типов обусловлен удобством общей компоновки привода (относительным расположением двигателя и рабочего вала приводимой в движение машины и т.д.). В одноступенчатом червячном редукторе используется червячная передача, состоящая из червяка и червячного колеса. Червячное колесо устанавливается на тихоходном валу, а вал- ...
... 365·6·2·8=35040 ч. Принимаем время простоя машинного агрегата 15% ресурса. Тогда L΄h= Lh·0,85=35040·0,85=29784 ч. Рабочий ресурс привода принимаем Lh=30·103 ч. 2. РАСЧЁТ ЗУБЧАТОЙ ПЕРЕДАЧИ РЕДУКТОРА Выбор материала и назначение термической обработки Выбираем марку стали – 40Х для шестерни и колеса, термообработка с улучшением. Для шестерни: НВ1=269…302 = 285,5; Для колеса: ...
0 комментариев