Подача при сверлении : S = 0.02 ´ = 0.02 ´ 30 = 0.6 мм/об;
Корректируем подачу по паспорту станка 2Н135;
Sпас = 0.1 ¸ 1.6 мм/об; Z =9;
S = 0.6, т.е. 0.1 < S < 1.6
Выбираем подачу по ступеням:
Smax = j z-1 ´ Smin;
S2 = 0.1 ´ 1.42 = 0.142 мм/об
S3 = 0.142 ´ 1.42 = 0.202 мм/об
S4 = 0.202 ´ 1.42 = 0.286 мм/об
S5 = 0.286 ´ 1.42 = 0.406 мм/об
S6 = 0.406 ´ 1.42 = 0.577 мм/об
S7 = 0.577 ´ 1.42 = 0.820 мм/об
В качестве рассчётной принимаем ближайшую меньшую
Sp = S6 = 0.577 мм/об
3 . Определяем расчётную скорость резанья при сверлении
где
Кv = KLv ´ KMv ´ KHv - поправочный коэффициент.
KLv - коэффициент, учитывающий глубину отверстия в зависимости от диаметра сверла. По таблице 9 находим KLv = 1.0;
KMv - коэффициент учитывающий влияние материала.
Для стали ; где a = 0.9 (таб. 10)
s в = 61; ;
KMv - коэффициент учитывающий материал сверла.
Для сверла из быстрорежущей стали KMv = 1.0;
то Кv = KLv ´ KMv ´ KMv = 1.0 ´ 1.14 ´ 1.0 = 1.14;
По табл. 11 находим для S > 0.2;
Cv = 9.8; bv = 0.4; Xv = 0; Yv = 0.7; m = 0.2;
м/мин;
Определяем расчётную частоту вращения шпинделя
По паспорту станка
nmin = 31.5 об/мин;
nmax = 1400 об/мин;
Z = 12; число ступеней вращения
nmax = nmin ´ j z-1
Частота вращения по ступеням:
n2 = n1 ´ j = 31.5 ´ 1.41 = 44.42 об/мин;
n3 = n2 ´ j = 44.4 ´ 1.41 = 62.62 об/мин;
n4 = n3 ´ j = 62.6 ´ 1.41 = 88.3 об/мин;
n5 = n4 ´ j = 88.3 ´ 1.41 = 124.5 об/мин;
n6 = n5 ´ j = 124.5 ´ 1.41 = 175.6 об/мин;
n7 = n6 ´ j = 175.6 ´ 1.41 = 247.5 об/мин;
n8 = n7 ´ j = 247.5 ´ 1.41 = 349.0 об/мин;
В качестве рассчётной принимаем ближайшую меньшую частоту вращения
np = n7 = 247.5 об/мин
Определяем фактическую скорость резания.
Основные режимы резанья при сверлении:
S = 0.6 мм/об;
V = 23.31 м/мин;
n = 247.5 об/мин;
Определяем осевую силу резания:
Р0 = Ср ´ DZp ´ Syp ´ KMp
по таблице 6 КMp = 0.89: по табл. 12 находим:
Ср = 51; Zp = 1.4; Yp = 0.8, то
Р0 = 51 ´ 301.4 ´ 0.60.8 ´ 0.89 = 51 ´ 116.9 ´ 0.665 ´ 0.89 = 352.8 кг-с;
Рдоп = 1500 кг-с; то
Р0 < Р0 доп;
Определяем крутящий момент
где ;
то табл. 12 находим для стали СМ = 40; ВМ = 2.0; Yм = 0.8;
Мкр = 40 ´ 302.0 ´ 0.60.8 ´ 0.89 = 8.54 кг-с ´ м;
по паспорту станка Мкр п = 40 кг-с ´ м;
Определяем мощность на шпинделе станка.
h = 0.8 (КПД станка по паспорту)
Коэффициент использования станка по мощности
где - мощность главного электродвигателя станка по паспорту.
Определяем основное техническое время
где L - расчётная длинна обрабатываемой поверхности.
;
l -действительная длина (чертёжный размер) l = 33 мм;
l1 - величина врезания;
l2 - выход инструмента;
l1 + l2 = 0.4 ´ D = 0.4 ´ 30 = 12 мм
(Приложение) Операционаая карта механической обработки (сверлильная)
Расчёт режима резания при протягивании
По таблице 15 выбираем подачу на зуб;
= 0.1 мм
Определяем расчётную скорость резания:
;
где Т = стойкость протяжки; назначаем Т =300 мин,
по таблице 16 находим
;
По паспорту станка
1 < < 9, то расчёт верен.
Определяем силу резания :
по таблице 17 находим
=177; = 0.85;
= 0.1 мм; b = 10; n = 1
- коэффициенты, характеризующие влияние соответственно износа, смазочно охлаждающей жидкости заднего и переднего углов.
=1.0; =1; =1.0
= 1.13 (охлаждение эмульсолам)
;
По паспорту станка =10000 кг-с, то расчёт верен.
Определяем эффективную мощность.
;
Потребляемая мощность
;
где h = 0.9 - КПД станка по паспорту.
Коэффициент использования по мощности главного электродвигателя.
В связи с низким коэффициентом использования электродвигателя в качестве протяжного станка можно выбрать менее мощный, например 7Б505 с мощностью 7 квт.
Определяем основное технологическое время Т;
; где
= l +- длина рабочего хода инструмента;
l - действительное определение (чертёжная) длина протягиваемой детали. l = 33;
- длина режущей части протяжки
мм;
- длина калибрующей части
мм; l = 10 мм - длина перебегов протяжки.
мин;
(Приложение) Операционная карта механической обработки при протягивании.
Расчёт и конструирование сверла.
Расчёт и конструирование сверла из быстрорежущей стали с коническим хвостовиком для обработки сквозного отверстия Æ 30, глубиной L = 33 мм. В заготовке из стали 45 с пределом прочности s = 610 Мпа;
Определяем диаметр сверла по ГОСТ 2092-77 находим необходимый диаметр сверла Æ 30 мм: сверло 2301-4157.
Определяем осевую составляющую силы резания
DХp;
;
где по таблице ;
- по расчётам режима резания;
;
Момент силы сопротивления резания
DZм, где
Определяем № конуса Морзе хвостовика;
осевую составляющую силу резания можно разложить на две силы:
Q - действующую нормально к образующей конуса , где q угол конусности хвостовика, и силу R действующую в радиальном направлении и уравновешивающую реакцию на противоположной точке поверхности конуса.
Сила Q создаёт касательную составляющую T силы резания; с учётом коэффициента трения поверхности конуса о стенки втулки m имеем:
;
Момент трения между хвостовиком и втулкой:
Приравниваем момент трения к максимальному моменту сил сопротивления резанию, т.е. к моменту, создающимуся при работе затупившимся сверлом, который увеличивается до трёх раз по сравнению с моментом, принятым для нормативной работы сверла
средний диаметр конуса хвостовика: или ;
=9.225 кг-с´ м;
= 654 кг-с
m = 0.096 - коэффициент трения стали по стали;
Ð q =
- отклонение угла конуса
мм
По ГОСТ 25557-82 выбираем ближайший больший конус т.е. конус Морзе №3:
... поверхностях зуба, мкм; Rz80 – шероховатость на боковых поверхностях шпоночного паза в центральном отверстии, мкм; Rz40 – шероховатость на дне шпоночного паза, мкм. 2.4 Разработка технологического процесса изготовления конического зубчатого колеса 2.4.1 Выбор заготовки и способа ее получения Для изготовления данной детали используется сталь 18 ХГТ Характеристика стали 18ХГТ Марка ...
... Цена деления 0,001 мм; Допускаемая погрешность 0,0035 мм 1. Расчет режимов резания. Расчет режима резания при токарной обработке. Деталь - коническое зубчатое колесо . Материал сталь 45; s в = 61 кг-с/ мм 2 ; Режущий инструмент - токарный проходной резец из быстрорежущей стали Т5К10, правый, стойкость резца - 90 мин . Оборудование ...
... , разработки переходов, выбор оборудования и инструментов, определение режима резания и т.д. Цель разработки технологического процесса - выбор наиболее эффективных методов и средств изготовления детали. Деталь: Коническое зубчатое колесо Изготовлено из стали Ст 45 (ГОСТ 1050-74) s в 610 Мпа 200 НВ Так как одной из характеристик данного производства является малый объём выпуска ...
... колеса не шлифуют, а ограничиваются притиркой. В конических передачах для обеспечения при сборке правильного контакта зубьев предусматривают возможность осевой регулировки зубчатых колес. Несущая способность конических зубчатых передач с повышенным перекосом осей (от консольного расположения, недостаточной жесткости валов и корпусов) может быть несколько повышена даже по сравнению с передачами, ...
0 комментариев