4.2. Парадоксы теории множеств
Необходимость введения аксиоматики была связана не с мнимыми противоречиями теории множеств. Эти противоречия обнаружились не в теории Кантора и Дедекинда, а в теориях, придуманных самими логиками, специально с целью обнаружить в них противоречия.
Аксиома Фреге. Для любого свойства Р существует множество {x | Р(x)} всех объектов х, обладающих свойством Р.
Парадокс Рассела. Пусть X - множество всех множеств, которые не являются собственными элементами. Тогда X в том и только том случае является собственным элементом, когда оно не является собственным элементом.
Доказательство. Предположим, что XÎX. Тогда X является собственным элементом и, значит, не входит в X по определению X. Таким образом, XÎXÞXÏX. С другой стороны, если XÏX то X не является собственным элементом и, значит, входит в X по определению X. Таким образом. XÏXÞ XÎX.
Классические формулировки парадокса Рассела.
Парадокс Рассела можно сформулировать и не используя теорию множеств. Вот три классические формулировки этого парадокса.
Парадокс парикмахера. Вождь афинской демократии Клисфен повелел, чтобы единственный парикмахер города брил тех и только тех граждан Афин, которые не бреются сами. Должен ли парикмахер брить себя?
Парадокс каталога. Библиотека Борхеса решила составить библиографический каталог, в который входят те и только те каталоги, которые не включают себя. Включает ли такой каталог себя?
Парадокс самоуважения. Имеет ли профессор Конте самоуважение, если он уважает только тех, кто не уважает себя?
Объяснение логических парадоксов. Легко видеть, что в действительности все эти парадоксы не содержат в себе ничего парадоксального и математики повседневно сталкиваются с подобными ситуациями. Чтобы объяснить, в чем тут дело, дадим еще одну эквивалентную формулировку парадокса Рассела.
Парадокс Пиглета. Пусть п - такое целое число, которое одновременно больше и меньше нуля. Тогда п в том и только том случае является положительным, когда оно является отрицательным.
Но ведь такого числа не существует. Именно так: все “логические парадоксы” (не путать с “лингвистическими” или “семантическими” парадоксами, типа парадокса лжеца) построены по следующей схеме: предположим, что существует некоторый объект X. Тогда этот объект X одновременно обладает и не обладает некоторым свойством. Но это в точности и значит, что требуемого объекта X не существует, именно так устроены доказательства от противного, например, доказательство иррациональности числа или бесконечности множества простых чисел. Единственная разница состоит в том, что в парадоксе Пиглета противоречивость условия очевидна сразу, а в парадоксе Рассела условие не кажется противоречивым - хотя и является таковым. Таким образом, парадокс Рассела всего лишь доказывает (от противного), что не существует множества Y = {X | XÏX} всех множеств, не являющихся собственными элементами, и, тем самым, не для любого свойства Р обязано существовать множество {х | Р(х)}. Но никто из серьезных математиков никогда и не утверждал, что любое свойство должно определять множество.
Парадокс бесконечности. Построим бесконечное множество следующим образом: на каждом шаге в множество будем добавлять два элемента из натурального ряда, и после этого убирать первый в порядке следования. Получим следующую схему:
{1, 2}; {2}; {2, 3, 4}; {3, 4}; {3, 4, 5, 6}; {4, 5, 6}…
Возникает вопрос: сколько элементов будет в этом бесконечном множестве? Количество элементов возрастает. Но на первом шаге мы убрали из множества первый элемент, на втором шаге – второй и так далее. Если рассматривать каждый конкретно взятый элемент, то окажется, что его нет во множестве (ведь nÞ¥).
На самом деле парадокса тут никакого нет. Все дело в том, что бесконечные множества устроены существенно сложнее конечных, и интуиция тут не всегда срабатывает правильно.
Столкнувшись с этими парадоксами, создатели теории множеств осознали, что нельзя задавать множества произвольными словосочетаниями. После этого они стали бороться с парадоксами двумя способами.
Первый способ – способ Кантора, придумавшего теорию множеств, в которой запрещаются все действия и операции, ведущие к парадоксам. Идея в следующем: разрешается работать с множествами, которые “встречаются в природе”, также разрешается работать с множествами, которые получаются из них разумными теоретико-множественными операциями.
Другой способ – аксиоматический (система аксиом Цермело–Френкеля, система аксиом Геделя–Бернайса).
ЗаключениеДанная курсовая работа рассматривает основные элементы теории множеств: исходные понятия теории множеств, основные теоретико-множественные отношения, аксиоматику теории множеств. Теоремы и следствия из них имеют содержательное доказательство, сложные в понимании понятия рассмотрены в соответствии с наглядными примерами, что облегчает понимание материала.
Разработанное в Power Point приложение содержит набор слайдов, что позволяет расширить область применения: в частности, организация презентаций для студентов.
Электронный учебник дает возможность самостоятельного изучения материала.
На данный момент непротиворечивость теории множеств не установлена, что открывает дальнейшие перспективы в развитии этой концепции.
Список литературыВарпаховский Ф.Л., Солодовников А.С. Алгебра. Элементы теории множеств. Линейные уравнения и неравенства. Матрицы и определители. -М.: Просвещение, 1974,- 160 с.
Завало С.Т., Костарчук В.Н., Хацет Б.И. Алгебра и теория чисел. Часть I - Киев: Вища школа, 1977. - 398 с.
Куликов Л.А. Алгебра и теория чисел. - М.: Высшая школа, 1979. - 560 с.
Куратовский К., Мостовский А. Теория множеств. – М.: Мир, 1970.
Лавров И.А., Максимова Л.Л. Задачи по теории множеств, математической логике и теории алгоритмов. - М.: Наука, 1975. - 240 с.
Ляпин Е.С., Евсеев А.Е. Алгебра и теория чисел. Часть I. - М.: Просвещение, 1974. -383 с.
Оре, Остин. Приглашение в теорию чисел. - М.: Наука, 1980. - 127 с.
Прахар К. Распределение простых чисел. - М.: Мир, 1967. - 511 с.
Солодовников А.С. Системы линейных неравенств. - М: Наука, 1978.
Фаддеев Д.К. Лекции по алгебре. - М.: Наука, 1984. -416 с.
ПРИЛОЖЕНИЕ 1. ПРОГРАММНОЕ ОБЕСПЕЧ
... проверить знания студента из первой части курса, которая излагается в первых четырёх модулях. Во вторых вопросах билета проверяются знания классической предельной проблемы теории вероятностей и математической статистики, которые излагаются в следующих пяти модулях. 1. Вероятностная модель с не более чем счётным числом элементарных исходов. Пример: испытания с равновозможными исходами. 2. ...
... , почему именно эти аксиомы оказались настолько успешными и достойными специального внимания. Соответственно самая большая слабость формализма состоит в невозможности объяснить, почему аксиомы теории множеств, предположительно не отражающие никакой реальности, способны доказывать арифметические утверждения, не доказуемые с помощью более финитистских средств. Слабость, которую, как я полагаю, ...
... вующий класс (предложение 4), то из аксиомы S следует, что для любого множества х класс всех его элементов, удовлетворяющих данной предикативной формуле A(у), есть множество. Однако для полного развития теории множеств потребуется аксиома, более сильная, чем аксиома S. Введем предварительно несколько определений. Определения Un (X) означает xyz ( X & X y = z). (X однозначен.) ...
... монету второй раз не бросают), в четвертом — второму. Шансы игроков на выигрыш относятся как 3 к 1. В этом отношении и надо разделить ставку. Глава II. Элементы теории вероятностей и статистики на уроках математики в начальной школе (методика работы) Первый шаг на пути ознакомления младших школьников с миром вероятности состоит в длительном экспериментировании. Эксперимент повторяют много раз при ...
0 комментариев