Н. Вагутен

В этой работе мы рассмотрим ряд ситуаций, в которых число вида a + b√d полезно заменить сопряжённым a – b√d. Мы увидим, как этот простой приём — замена знака перед радикалом — помогает в решении разнообразных задач алгебры и анализа — от нехитрых оценок и преобразований до трудных олимпиадных задач и замысловатых придумок составителей конкурсных экзаменов.

Большинство наших примеров может служить первым знакомством с глубокими математическими теориями (кое-где мы указываем статьи и книги для продолжения знакомства). Среди задач, включённых в статью, две — из Задачника «Кванта» и несколько — из писем читателей, уже испытавших удовольствие от трюков с радикалами и желающих поделиться им с другими.

Пары сопряжённых чисел появляются вполне естественным образом, когда мы решаем квадратное уравнение, а корень из дискриминанта не извлекается: скажем, уравнение λ2 – λ – 1 = 0 имеет пару «сопряжённых» корней:

λ1 =

1 – √5

2

и

λ2 =

1 + √5

2

.

К этому мы ещё вернёмся, а начнём с примеров другого рода: займёмся «перебросками»...

...Из числителя в знаменатель (и обратно)

Если в книжке указан ответ к задаче (3 + √7)/2, а у вас получилось 1/(3 – √7) — не спешите искать ошибку в решении: ответ правильный — эти числа равны, потому что

(3 + √7)(3 – √7) = 32 – 7 = 2.

Вот несколько характерных примеров, где полезно перенести «иррациональность» из числителя в знаменатель или наоборот.

1. Найти сумму

1

1 + √2

+

1

√2 + √3

+ ... +

1

√99 + √100

.

Эта сумма мгновенно «сворачивается», если переписать её так:

(√2 – 1) + (√3 – √2) + ... + (√100 – √99) = –1 + 10 = 9.

По выражению из статьи [1] «остаются крайние» (см. также [5]).

2. Доказать, что для любых натуральных m и n

m

n

– √2

1

αn2

,
(1)

где α = √3 + √2.

Подобный факт мы использовали недавно при решении трудной задачи М514 ([2]).

В самом деле, всегда

m – n√2

n

=

|m2 – 2n2|

(m + n√2)n

1

(m + n√2)n

,
(2)

поскольку число |m2 – 2n2| — целое и отлично от 0 (равенство m2 = 2n2 невозможно — подумайте, почему!). Если бы выполнялось неравенство, противоположное (1), то должно было бы быть m < n√2 + 1/αn и

n(m + n√2) < n ( 2n√2 +

1

αn

)

= 2n2√2 +

1

√3 + √2

=

= 2n2√2 + √3 – √2 ≤ n2(2√2 + √3 – √2) = αn2.

(3)

Но из (2) и (3) следует (1). Значит, наше предположение неверно, то есть (1) выполнено.

Неравенство (1) показывает, что число √2 сравнительно плохо приближается дробями с небольшими знаменателями; аналогичное неравенство (только с другим коэффициентом α) выполнено не только для √2, но и для любой «квадратичной иррациональности». Разумеется, (1) выполнено и при всех α > √3 + √2, но константа √3 + √2 здесь не наименьшая из возможных. Вопросы о приближениях квадратичных иррациональностсй рациональными числами — далеко продвинутая и важная для приложений область теории чисел ([3], [4]); с приближениями числа √2 мы ещё встретимся ниже (см. упражнение4).

[Если при решении этой задачи рассмотреть отдельно случаи n=1 и n≠1, то можно показать, что

m

n

– √2

1

πn2

.

Оно лишь немного сильнее, чем неравенство (1), поскольку

1

π

= 0,3183... > 0,3178... =

1

√3 + √2

,

зато выглядит гораздо эффектнее.

Помню, как в мою бытность студентом, на лекциях по алгебре наш профессор говорил: «Корень из трёх — это, примерно, 1,73; корень из двух — 1,41. Поэтому их сумма равна... (следовала пауза, необходимая для сложения этих чисел "в столбик") 3,14. А это есть?..» (он поворачивался к аудитории и сразу несколько человек говорили "пи") «Ну, вот», — с удовлетворением заключал профессор, выписывая окончательное "равенство": √3 + √2 = π. :) — E.G.A.]

3. Найдите предел последовательности an = (√n² + 1 – n)n.

Преобразуем an так:

(√n² + 1 – n)n =

n

√n² + 1 + n

=

1

1 + √1 + 1/n²

.

Теперь ясно, что an возрастает и стремится к пределу 1/2.

В противоположность предыдущему примеру здесь мы имеем дело с хорошим приближением: √n² + 1 – n < 1/2n.

4 . Даны две последовательности an = √n+1 + √n и bn = √4n+2. Докажите, что

а) [an] = [bn],

б) 0 < bn – an < 1/16n√n.

В разности bn – an появляется «тройная иррациональность»; к таким иррациональностям мы ещё вернёмся (см. задачу8), но пока мы будем рассматривать √n+1 + √n = an как одно целое. Заметим, что величина an2=2n+1+2√n(n+1), очевидно, заключена между 4n+1 и 4n+2=bn2, поскольку n < √n(n+1) < n+1. Итак, мы уже получили an < bn — левое неравенство в б). Кроме того, число bn2 = 4n+2, дающее при делении на 4 в остатке 2, не может быть полным квадратом (проверьте!), поэтому квадрат целого числа [bn] не больше 4n+1; из неравенств [bn] ≤ √4n+1 < an < bn вытекает а). Теперь осталось оценить разность bn – an сверху. Посмотрите, как здесь дважды работает переброска «сопряжённого» числа в знаменатель:

√4n+2 – √n – √n+1 =

2n + 1 – 2√n(n + 1)

√4n + 2 + √n + √n + 1

=
=

1

(√4n + 2 + √n + √n + 1)(2n + 1 + 2√n(n + 1))

(тут, конечно, нам повезло:

разность квадратов (2n + 1)2 – 4n(n + 1) равна 1)

1

(2√n + √n + √n)(2n + 2n)

=

1

16n√n

.

Заметим, что и эта оценка очень точная. Но убедиться в этом (и вообще исследовать поведение функции с многими радикалами) лучше уже не с помощью алгебраических преобразований, а средствами анализа — заменить переменную n на h = 1/n и воспользоваться формулой Тейлора √1 + h = 1 + h/2 – h2/8 + ... (См. [6].)

Заменим плюс на минус

Мы уже говорили о пользе симметрии в геометрических задачах. Своего рода симметрией в алгебре является замена плюса на минус.

Так, если какое-либо выражение от √d равно p + q√d и мы всюду в этом выражении заменим √d на –√d, то естественно ожидать, что новое выражение окажется равным сопряженному числу p – q√d. Мы будем пользоваться таким очевидным частным случаем этого свойства (a и b — рациональны, √d — нет):

(a + b√d)n = p + q√d => (a – b√d)n = p – q√d.

(4)

Информация о работе «Сопряжённые числа»
Раздел: Математика
Количество знаков с пробелами: 20648
Количество таблиц: 49
Количество изображений: 6

Похожие работы

Скачать
12554
0
0

... 3. Соглашение о комплексных числах. 1.           Действительное число а записывается также в виде a + 0i (или a – 0i). П р и м е р ы. Запись 3 + 0i обозначает то же, что запись 3. Запись –2 + 0i означает –2. 2.           Комплексное число вида 0 + bi называется “чисто мнимым”. Запись bi обозначает то же, что 0 + bi. 3.           Два комплекных a + bi, a’ + b’i считаются равными ...

Скачать
29623
1
13

... в сопряжённых комплексных координатах 1.1. Определение аффинного преобразования Введём определение аффинного преобразования евклидовой плоскости в сопряжённых комплексных координатах. Преобразование евклидовой плоскости называется аффинным, если оно отображает каждую прямую на прямую. [1] 1.2. Формула аффинного преобразования Мы хотим построить теорию аффинных преобразований с помощью ...

Скачать
3575
9
0

дним членам так называемой последовательности Фибоначчи: 34 и 55 или 89 и 144. Филлотаксис подсолнечника — одна из многих неожиданных встреч с последовательностью Фибоначчи. Впервые с ней столкнулся в прошлом столетии французский математик Эдуард Люка. Читая книгу «Искусство абака» знаменитого итальянского математика эпохи Возрождения Леонардо Пизанского, известного больше по прозвищу Фибоначчи, ...

Скачать
29883
0
0

... это целый класс реакций окисления органических веществ с участием катализатора, обладающего окислительно-восстановительными свойствами. Этот процесс протекает циклично т. е. состоит из многократных повторений. Колебательные химические реакции были открыты и научно обоснованы в 1951 г. советским учёным Борисом Петровичем Белоусовым. Б.П. Белоусов изучал окисление лимонной кислоты при её реакции с ...

0 комментариев


Наверх