Написать уравнение с целыми коэффициентами, один из корней которого равен 1 + √2 + √3

20648
знаков
49
таблиц
6
изображений

9. Написать уравнение с целыми коэффициентами, один из корней которого равен 1 + √2 + √3.

Возникает подозрение, что вместе с этим числом λ1 уравнению с целыми коэффициентами удовлетворяют и сопряжённые, которые в решении предыдущей задачи мы обозначили λ2, λ3, λ4. Нужное уравнение можно записать так:

(x – λ1)(x – λ2)(x – λ3)(x – λ4) = 0;

то есть

(x – 1 – √2 – √3)(x – 1 + √2 – √3)× (x – 1 – √2 + √3)(x – 1 + √2 + √3) = 0;

после преобразований получаем

((x – 1)2 – 5 – 2√6)·((x – 1)2 – 5 + 2√6) = 0, (x2 – 2x – 4)2 – 24 = 0, x4 – 4x3 – 4x2 – 16x – 8 = 0.

Именно такое уравнение получилось бы в качестве характеристического, если бы мы применили упомянутую мелким шрифтом в конце предыдущего раздела общую теорию к исследованию линейного преобразования

(qn; rn; sn; tn) → (qn+1; rn+1; sn+1; tn+1)

в предыдущей задаче. Заметим, кроме того, что мы на самом деле получили уравнение наименьшей степени (с целыми коэффициентами) с корнем λ1 = 1 + √2 + √3. Попробуйте это доказать!

Алгебраическое послесловие

Мы разобрали несколько примеров, в которых затрагивались пограничные вопросы алгебры, математического анализа и теории чисел. (Каждому направлению, которое мы наметили, можно было бы посвятить более подробную статью в «Кванте»!) В заключение покажем ещё, как можно смотреть на основных героев статьи — «сопряжённые числа» — с чисто алгебраической точки зрения.

Предположим, что у нас есть множество P чисел (или выражений с буквами, или ещё каких-то элементов), с которыми можно выполнять четыре действия арифметики с соблюдением обычных арифметических правил. Такое множество называется полем; поля образуют, например, рациональные и действительные числа. Если в поле P не разрешимо, скажем, уравнение x2 – d = 0, то можно расширить его, рассматривая элементы вида p + q√d, где p, q  P, a √d — новый символ, который при умножении сам на себя дает d, т.е. √d·√d = d, так что

(p + q√d)·(p' + q'√d) = (pp' + qq'd) + (pq' + qp')√d.

При d = –1 расширением поля вещественных чисел получаются комплексные числа.

В новом поле P1 — «квадратичном расширении» поля P — есть интересное отображение λ = p + q√d → λ = p – q√d (своеобразная «алгебраическая симметрия»), называемое сопряжением, с такими свойствами:

Все элементы старого поля P переходят в себя;

Все равенства, содержащие арифметические операции, при этом отображении сохраняются:

λ + μ = λ + μ; λ · μ = λ · μ; (10)

Это отображение является частным случаем так называемых автоморфизмов Галуа расширения P1 поля P.

В задачах 8 и 9 мы видели пример «двукратного» расширения — присоединения √2 и затем √3, — в результате которого получилось поле с бо́льшим количеством автоморфизмов Галуа: кроме тождественного отображения, их уже три

(√2 → –√2, √3 → √3;√2 → √2, √3 → –√3;√2 → –√2, √3 → –√3),

и их «взаимодействие» устроено так же, как во множестве самосовмещений прямоугольника.

Оказывается, к основному полю можно присоединять корни любого алгебраического уравнения. Автоморфизмы возникающего нового поля — предмет одной из красивейших ветвей алгебры XIX–XX века, теории Галуа, которая позволяет, в частности, исследовать вопрос о разрешимости уравнений в радикалах ([13], [14]).

Мы закончим эту статью набором задач, в основном продолжающих уже затронутые темы, но требующих иногда и новых соображений, и обещанным списком литературы.

Список литературы

1. Л.Курляндчик, А.Лисицкий. «Суммы и произведения» («Квант», 1978, №10). назад к тексту

2. Второе решение задачи М514 («Квант», 1979, №5, с.26). назад к тексту

3. Р.Нивен. «Числа рациональные и иррациональные» (М., «Мир», 1966). назад к тексту

4. Д.Фукс, М.Фукс. «О наилучших приближениях» («Квант», 1971, №6, №11) и «Рациональные приближения и трансцендентность» («Квант», 1973, №1). назад к тексту

5. Н.Васильев, В.Гутенмахер. «Прямые и кривые» (М., «Наука», 1978), с.103–105. назад к тексту

6. А.Н.Маркушевич. «Ряды» (М., «Наука», 1979). назад к тексту

7. Избранные задачи из журнала American Mathematical Monthly (М., «Мир», 1977), с.560–561. назад к тексту

8. Л.Курляндчик, Г.Розенблюм. «Метод бесконечного спуска» («Квант», 1978, №1). назад к тексту

9. В.Березин. «Филлотаксис и последовательность Фибоначчи», («Квант», 1979, №5, с.53). назад к тексту

10. Н.Н.Воробьев. «Числа Фибоначчи» (Популярные лекции по математике, вып.6) (М., «Наука», 1978). назад к тексту

11. А.И.Маркушевич. «Возвратные последовательности» (Популярные лекции но математике, вып.1) (М., «Наука», 1978). назад к тексту

12. Л.И.Головина. «Линейная алгебра и некоторые её приложения» (М., «Наука», 1979). назад к тексту

13. М.М.Постников. «Теория Галуа» (М., Физматгиз, 1963). назад к тексту

14. Ван-дер-Варден. «Алгебра» (М., «Наука», 1976). назад к тексту


Информация о работе «Сопряжённые числа»
Раздел: Математика
Количество знаков с пробелами: 20648
Количество таблиц: 49
Количество изображений: 6

Похожие работы

Скачать
12554
0
0

... 3. Соглашение о комплексных числах. 1.           Действительное число а записывается также в виде a + 0i (или a – 0i). П р и м е р ы. Запись 3 + 0i обозначает то же, что запись 3. Запись –2 + 0i означает –2. 2.           Комплексное число вида 0 + bi называется “чисто мнимым”. Запись bi обозначает то же, что 0 + bi. 3.           Два комплекных a + bi, a’ + b’i считаются равными ...

Скачать
29623
1
13

... в сопряжённых комплексных координатах 1.1. Определение аффинного преобразования Введём определение аффинного преобразования евклидовой плоскости в сопряжённых комплексных координатах. Преобразование евклидовой плоскости называется аффинным, если оно отображает каждую прямую на прямую. [1] 1.2. Формула аффинного преобразования Мы хотим построить теорию аффинных преобразований с помощью ...

Скачать
3575
9
0

дним членам так называемой последовательности Фибоначчи: 34 и 55 или 89 и 144. Филлотаксис подсолнечника — одна из многих неожиданных встреч с последовательностью Фибоначчи. Впервые с ней столкнулся в прошлом столетии французский математик Эдуард Люка. Читая книгу «Искусство абака» знаменитого итальянского математика эпохи Возрождения Леонардо Пизанского, известного больше по прозвищу Фибоначчи, ...

Скачать
29883
0
0

... это целый класс реакций окисления органических веществ с участием катализатора, обладающего окислительно-восстановительными свойствами. Этот процесс протекает циклично т. е. состоит из многократных повторений. Колебательные химические реакции были открыты и научно обоснованы в 1951 г. советским учёным Борисом Петровичем Белоусовым. Б.П. Белоусов изучал окисление лимонной кислоты при её реакции с ...

0 комментариев


Наверх