8. Пусть

(1 + √2 + √3)n = qn + rn√2 + sn√3 + tn√6,

где qn, rn, sn и tn — целые числа. Найти пределы

lim
n → ∞

rn

qn

,
lim
n → ∞

sn

qn

,
lim
n → ∞

tn

qn

.

Конечно, мы здесь можем выразить (qn+1; rn+1; sn+1; tn+1) через (qn; rn; sn; tn), пользуясь тем, что

qn+1 + rn+1√2 + sn+1√3 + tn+1√6 = (1 + √2 + √3)(qn + rn√2 + sn√3 + tn√6),

но, наученные опытом, мы уже знаем, что более простые формулы получаются не для самих чисел qn, rn, sn, tn, a для некоторых их комбинаций. Одну такую комбинацию мы уже знаем: это

qn + rn√2 + sn√3 + tn√6 = (1 + √2 + √3)n.

Нетрудно сообразить, каковы будут другие. Рассмотрим вместе с данным числом

λ1 = 1 + √2 + √3,

ещё три «сопряжённых»:

λ2 = 1 – √2 + √3, λ3 = 1 + √2 – √3, λ4 = 1 – √2 – √3.

Тогда

qn – rn√2 + sn√3 – tn√6 = λ2n,

qn + rn√2 – sn√3 – tn√6 = λ3n,

qn – rn√2 – sn√3 + tn√6 = λ4n.

Мы можем выразить qn, rn, sn, tn через λ1, λ2, λ3, λ4:

qn =

λ1n + λ2n + λ3n + λ4n

4

,

sn =

λ1n + λ2n – λ3n – λ4n

4√3

,

rn =

λ1n – λ2n + λ3n – λ4n

4√2

,

tn =

λ1n – λ2n – λ3n + λ4n

4√6

.

Теперь заметим, что λ1 > |λ2|, λ1 > |λ3|, λ1 > |λ4|. Поэтому

lim
n → ∞

rn

qn

=
lim
n → ∞

1 – (λ21)n + (λ31)n – (λ41)n

1 + (λ21)n + (λ31)n + (λ41)n

·

1

√2

=

1

√2

.

Аналогично найдём, что

lim
n → ∞

sn

qn

=

1

√3

и
lim
n → ∞

tn

qn

=

1

√6

.

Мы говорили выше, что сопряжённые числа a ± b√d возникают часто как корни квадратного уравнения с целыми коэффициентами. В связи с последней задачей возникает такое желание:


Информация о работе «Сопряжённые числа»
Раздел: Математика
Количество знаков с пробелами: 20648
Количество таблиц: 49
Количество изображений: 6

Похожие работы

Скачать
12554
0
0

... 3. Соглашение о комплексных числах. 1.           Действительное число а записывается также в виде a + 0i (или a – 0i). П р и м е р ы. Запись 3 + 0i обозначает то же, что запись 3. Запись –2 + 0i означает –2. 2.           Комплексное число вида 0 + bi называется “чисто мнимым”. Запись bi обозначает то же, что 0 + bi. 3.           Два комплекных a + bi, a’ + b’i считаются равными ...

Скачать
29623
1
13

... в сопряжённых комплексных координатах 1.1. Определение аффинного преобразования Введём определение аффинного преобразования евклидовой плоскости в сопряжённых комплексных координатах. Преобразование евклидовой плоскости называется аффинным, если оно отображает каждую прямую на прямую. [1] 1.2. Формула аффинного преобразования Мы хотим построить теорию аффинных преобразований с помощью ...

Скачать
3575
9
0

дним членам так называемой последовательности Фибоначчи: 34 и 55 или 89 и 144. Филлотаксис подсолнечника — одна из многих неожиданных встреч с последовательностью Фибоначчи. Впервые с ней столкнулся в прошлом столетии французский математик Эдуард Люка. Читая книгу «Искусство абака» знаменитого итальянского математика эпохи Возрождения Леонардо Пизанского, известного больше по прозвищу Фибоначчи, ...

Скачать
29883
0
0

... это целый класс реакций окисления органических веществ с участием катализатора, обладающего окислительно-восстановительными свойствами. Этот процесс протекает циклично т. е. состоит из многократных повторений. Колебательные химические реакции были открыты и научно обоснованы в 1951 г. советским учёным Борисом Петровичем Белоусовым. Б.П. Белоусов изучал окисление лимонной кислоты при её реакции с ...

0 комментариев


Наверх