1.2 Категоричность системы аксиом алгебры октав

Теорема 2. Система аксиом алгебры октав категорична.

Пусть (U, +, ., e) и (U1, ,, e1 ) - две модели алгебры октав и e2 = -1, e21 = Ө1.

Рассмотрим отображение Ф : U → U такое, что

Ф (u+ve) = uve1, u,v  К.

Покажем, что Ф - гомоморфное отображение первой модели на вторую модель.

Пусть w1 = u1+v1e и w2 = u2+v2e. Тогда:


Ф(w1+ w2) = Ф((u1+v1e) + (u2+v2e)) = Ф((u1+u2)+(v1+v2)e) = (u1+u2)(v1+v2)e1 = (u1v1e1 )  (u2v2e1) = Ф(u1+v1e)  Ф(u2+v2e) = Ф(w1)Ф(w2);

Ф(w1 w2) = Ф((u1+v1e)  (u2+v2e)) = Ф((u1u2 - 2v1)+(v2u1 + v1ū2)e) = (u1u2 - 2v1) (v2u1 + v1 ū2) e) =(u1u2 Ө 2v1)(v2u1 v1ū2)e) =(u1v1e1)( u2v2e1) = Ф(u1+v1e)  Ф(u2+v2e) = Ф(w1) Ф(w2);

Ф(-w) = Ф (-(u+ve)) = Ф (-u -ve) = ӨuӨve1 = Ө(uve1) = ӨФ(u+ve)= ӨФ(w);

Ф(w-1)=Ф((u+ve)-1)=Ф(Өe)= (Ө e) = Ө e = (uve1)-1 = (Ф(u+ve)Ө1) = (Ф(w)) Ө1.

Следовательно, отображение Ф есть гомоморфное отображение алгебры  в (U1, ,, e1 ).

Покажем, что отображение Ф инъективно:

Ф(w1)=Ф(w2)  Ф(u1+v1e) = Ф(u2+v2e)  u1v1e1 = u2v2e1 u1=u2v1=v2 u1+v1e= u2+v2e w1= w2.

Сюръективность отображения Ф очевидна, так как

(qU1) (u,vK)p= uve1 (u+ve = wU) Ф(w) = p.

Итак, отображение Ф есть изоморфизм алгебры  на алгебру (U1,,,e1) и, следовательно, система аксиом алгебры октав категорична ввиду изоморфности произвольных ее моделей.


§2. Дополнительные сведения об октавах

В ходе доказательства непротиворечивости системы аксиом алгебры октав мы установили, что любую октаву можно представить в виде:

w = a+bi+cj+dk+ Ae+BI+CJ+DK,

где a,b,c,d, a,b,c,d  R и i2 = j2 = k2 = e2=I2= j2 = k2 = -1,

причем iе = I, je = J, ke = К по обозначению.

Через пары эти мнимые единицы выражались следующим образом:

i=(i; 0), j=(j; 0), k=(k; 0), e=(0; 1), I=(0; i), j=(0; j), k=(0; k).

Вычислим другие произведения мнимых единиц:

iI = (i; 0)(0; i) = (i0 – ī0; ii + 0) = (0; -1) = -(0; 1) = - e;

iJ = (i; 0)(0; j) = (i0 – 0; ji + 0) = (0; -k) = -(0; k) = - K;

iK = (i; 0)(0; k) = (i0 – 0; ki + 0) = (0; j) = J;

I i = (0; i)(i; 0) = (0i – i; 00; + iī) = (0; 1) = e;

J i = (0; j)(i; 0) = (0i – j; 00; + jī) = (0; k) = K;

K i = (0; k)(i; 0) = (0i – k; 00; + kī) = (0; -j) = - (0; j) = -J;

jI = (j; 0)(0; i) = (j0 – ī0; ij + 0) = (0; k) = K;

jJ = (j; 0)(0; j) = (j0 – 0; jj + 0) = (0; -1) = -(0; 1) = - e;

jK = (j; 0)(0; k) = (j0 – 0; kj + 0) = (0; - i) = - (0; i) = -I;

I j = (0; i)(j; 0) = (0j – i; 00 + i) = (0; -k) = -(0; k) = - K;

J j = (0; j)(j; 0) = (0j – j; 00; + j) = (0; 1) = e;

K j = (0; k)(j; 0) = (0j – k; 00; + k) = (0; i) = I;

kI = (k; 0)(0; i) = (k0 – ī0; ik + 0) = (0; -j) = - (0; j) = -J;

kJ = (k; 0)(0; j) = (k0 – 0; jk + 0) = (0; i) = I;

kK = (k; 0)(0; k) = (k0 – 0; kk + 0) = (0; -1) = - (0; 1) = - e;

I k = (0; i)(k; 0) = (0k – i; 00; + i) = (0; j) = J;

J k = (0; j)(k; 0) = (0k – j; 00; + j) = (0; - i) = - (0; i) = -I;

K k = (0; k)(k; 0) = (0k – k; 00; + k) = (0; 1) = e;

e i = (0; 1)(i; 0) = (0i – 1; 00; + 1ī) = (0; - i) = - (0; i) = -I;

e j = (0; 1)(j; 0) = (0j – 1; 00; + 1) = (0; -j) = - (0; j) = -J;

e k = (0; 1)(k; 0) = (0k – 1; 00; + 1) = (0; -k) = - (0; k) = - K;

I e = (0; i)(0; 1) = (00 – i; 10; + i) = (-i; 0) = - (i; 0) = - i;

J e = (0; j) (0; 1) = (00 – j; 10; + j) = (- j; 0) = - (j; 0) = - j;

K e = (0; k) (0; 1) = (00 – k; 10; + k) = (- k; 0) = - (k; 0) = - k;

e I = (0; 1)(0; i) = (00 –ī1; i0; + 1) = (i; 0) = i;

e J = (0; 1)(0; j) = (00 –1; j0; + 1) = (j; 0) = j;

e K = (0; 1)(0; k) = (00 –1; k0; + 1) = (k; 0) = k;

I J = (0; i)(0; j) = (00 –i; j0 + i) = (- k; 0) = - (k; 0) = - k;

I K = (0; i)(0; k) = (00 –i; k0 + i) = (j; 0) = j;

J K = (0; j)(0; k) = (00 –j; k0 + j) = (- i; 0) = - (i; 0) = - i;

J I = (0; j)(0; i) = (00 –īj; i0 + j) = (k; 0) = k;

K I = (0; k)(0; i) = (00 –īk ; i0+ k) = (- j; 0) = - (j; 0) = - j;

K J = (0; k)(0; j) = (00 –k ; j0 + k) = (i; 0) = i.

При умножении на мнимые единицы кватернионов образуются дополнительно три несоставных мнимых единицы. Правило произведения мнимых единиц (1,i,j,k,E,I,J,K) может быть представлено таблицей 1.

При пользовании этой таблицей первым сомножителем следует брать элемент, занимающий строку, а вторым сомножителем - элемент, занимающий столбец.


1 i j k E I J K
1 1 i j k E I J K
i i -1 -k -j -I E K -J
j j k -1 i -J -K E I
k k -j -i -1 -K J -I E
E E I J K -1 -i -j -k
I I -E K -J i -1 k -j
J J -K -E I j -k -1 i
K K J -I -E k j -i -1

Или диаграммой взаимных произведений:

При получении вышеприведенной таблицы произведений мы исходили из правого закона произведения мнимых единиц кватернионов (внутренний круг диаграммы), правого закона произведения новых единиц (внешний круг диаграммы) и правого закона произведения мнимых единиц исходных кватернионов на мнимую единицу E (радиальные линии диаграммы). Так же можно использовать определение октав с левыми правилами произведения. В дальнейшем мы будем полагать, что используются правые правила.


§3.Действия над октавами

Так как по доказанному пара вида (и; v), где u = a+bi+cj+dk, v = A+Bi+Cj+Dk  K, есть и u+ ve, или в алгебраической форме

a+bi+cj+dk+ Ae+BI+CJ+DK,

то сложение двух октав осуществляется как сложение двух многочленов по правилу:

p+ q= (a+bi+cj+dk+ Ae+BI+CJ+DK) +(a1+b1i+c1j+d1k+ A1e+B1I+C1J+D1K) =

= a+a1+(b+b1)i +(c+c1)j +(d+d1)k +(A+ A1)e +(B+B1)I +(C+C1)J +(D +D1)K.

Умножение октав выполняется так; же, как умножение двух многочленов с учетом порядка, умножения мнимых единиц, представленного в вышеприведенной таблице.

Упражнения: 1. Приведите полное представление произведения двух октав

w= a+bi+cj+dk+ Ae+BI+CJ+DK

и w1 =a1+b1i+c1j+d1k+ A1e+B1I+C1J+D1K

в алгебраической форме.

(a+bi+cj+dk+ Ae+BI+CJ+DK)( a1+b1i+c1j+d1k+ A1e+B1I+C1J+D1K)=a a1+ab1 i+ ac1j+ad1k+aA1E+aB1I+aC1J+aD1K+bia1+bib1i+bic1j+bid1k+diA1E+biB1I+biC1J+

biD1K+cja1+cjb1i+cjc1j+cjd1k+cjA1E+cjB1I+cjC1J+cjD1K+dka1+dkb1i+dkc1j+dkd1k+dkA1E+dkB1I+dkC1J+dkD1K+AEa1+AEb1i+AEc1j+AEd1k+AEA1E+AEB1I+AEC1J+AED1K+ BIa1+BIc1j+BId1k+BIA1E+BIB1I+BIC1J+BID1K+CJa1+Cjb1i+CJc1j

+CJd1k+CJA1E+CJB1I+CJC1J+CJD1K+Dka1+DKb1i+DKc1j+DKd1k+DKA1E+DKB1I+DKC1J+DKD1K=aa1+ab1i+ac1j+ad1k+aA1E+aB1I+aC1J+aD1K+bia1-bb1+bc1k-bd1j-bA1I+bB1E+bC1K+bD1J+cja1-cb1k-cc1+cd1i-cA1J+cB1K-Cc1E +cD1I+dka1+db1j-c1di-dd1+dA1K-dB1J+dC1I-dD1E+AEa1-Ab1I-Ac1J-Ad1K-AA1+Ab1i+AC1j+AD1k+Bia1+Bb1E-Bc1K+Bd1J-Ba1i-BB1-BC1k+BD1j+CJa1+Cb1K-Cc1E-Cd1I-CA1j+CB1k-CC1-CD1i+DK1a-Db1J-Dc1I+Dd1E-DA1k-DB1j+DC1i-DD1=aa1-bb1-cc1-dd1-AA1-BB1-CC1-DD1+i(ab1+ba1+cd1-dc1+AB1-BA1- -cD1+Dc1)+j(ac1-bd1+ca1+db1+AC1+BD1-CA1-DB1)+k(ad1+bc1-cb1+da1+AD1-BC1+CB1-Da1)+E(aA1-bB1-cC1-dD1+Aa1+Bb1+Cc+Dd1)+I(aB1+bA1-Cd1+dC1-Ab1+Ba1-Cd1-Dc1)+J(ac1+bD1+cA1-dB1-Ac1+Bd1+Ca1-Db1)+K(aD1-bC1+cB1+Da1-Ad1-Bc1+ Cb1 +Da1).

Этот результат можно записать в матричной форме:

,

.

Решение примеров:

Пример 1.

Сложить кватернионы:

(1+i-2j+15E-17J)+(-2+5j-17E+20K)= -1+i+3j-2E-17J+20K.

Пример 2.

Выполнить умножение:

(1+3K)(2-i+3j+2E+2K)=2-i+3j+2E+2K+6K-3Ki+9Kj+6KE-6=2-i+3j+2E+8K+3J-9I+6K-6=-4-i+2E-9I+14K.

Пример 3.

Решить уравнение:

(1-2i+4K)x=(2-3j+J)(3-5k+E)-5J+8k.

В правой части приведем подобные слагаемые.

(2-3j+J)(3-5k+E)-5J+8k=6-10k+2E-9j+15jk-3jE+3J-5Jk+JE-5J+8k=6-10k+2E-9j+15i-3J+3J-5I-j-5J+8k=6+15i-10j-2k+2E-5I-5J.

x=(1-2i+4K )-1(6+15i-10j-2k+2E-5I-5J);

x=((1+2i-4K )(6+15i-10j-2k+2E-5I-5J))/21=1/21(6+15i-10j-2k+2E-5I-5J+12i-30-20k+4j-4I-10E-10K-24K-60J-40I-8E-8K+20J-20I)=1/21(-24+27i-6j-22k-16E-69I-45J-442K)


§4. Сопряженные октавы и их свойства

Определение. Если дана октава

w= a+bi+cj+dk+ Ae+BI+CJ+DK,

то октава

= a-bi-cj-dk- Ae-BI-CJ-DK

называется сопряженным ему. В случае, когда октава w выражена через кватернионы и и v как u+ ve, то сопряженная ей октава равна = ū- ve.

Свойства сопряженных октав:

1)         р +  = 2а  R (выводится непосредственным сложением октавы

р=a+bi+cj+dk+Ae+BI+CJ+DK

с сопряженной ей октавой).

(a+bi+cj+dk+Ae+BI+CJ+DK)+ (a-bi-cj-dk-Ae-BI-CJ-DK)=2a.

2) w=w = a2 + b2 + c2 + d2 + A2 + B2 + C2 + D2.

В самом деле:

w=(u+ ve)(ū- ve) = (uū –(-)v)+(-vu+vu)e = (uū+ )+(-vu+vu)e =(|u|2 + |v|2) + 0e = |u|2 + |v|2.

Здесь и и v кватернионы


u = a+bi+cj+dk, v = A+Bi+Cj+Dk.

А так как

|u|2 = a2 + b2 + c2 + d2, |v|2 = A2 + B2 + C2 + D2,

то w=|u|2 + |v|2 = a2 + b2 + c2 + d2 + A2 + B2 + C2 + D2.

Аналогично доказывается равенство

w = a2 + b2 + c2 + d2 + A2 + B2 + C2 + D2.

3) w= w= а  R.

4) =+

(вычисление левой и правой частей равенства дает

одинаковые значения).

В самом деле:

w1+ w = (a+bi+cj+dk+( Ae+BI+CJ+DK))+ (a1+b1i+c1j+d1k+ A1e+B1I+C1J+D1K);

левая часть:

=(a-bi-cj-dk-Ae-BI-CJ-DK)+(a1-b1i-c1j-d1k- A1e-B1I-C1J-D1K);

правая часть:

= (a-bi-cj-dk-Ae-BI-CJ-DK);

=( a1-b1i-c1j-d1k- A1e-B1I-C1J-D1K);

+=(a-bi-cj-dk-Ae-BI-CJ-DK)+(a1-b1i-c1j-d1k-A1e-B1I-C1J-D1K).


Отсюда следует, что

:= +.

5) =.

Пусть

w = u+ ve, w1 = u1+ v1e,

где u, u1 v, v1 - кватернионы.

Так как

w w1= (u+ ve) ( u1+ v1e) = (uu1 - v) + (v1u+vū1)e,

то

= + (v1u+vū1)e= (ū1ū -v) - (v1u+vū1)e.

С другой стороны:

= (ū1 - v1e) (ū - ve) = (ū1 ū -(- (-v1))+(- vū1 -v1) = (ū1ū -v1) - (vū1 +v1u)e.

В силу совпадения правых частей полученных равенств и следует тождество 5.

6) w+w1=2 (aa1+bb1+cc1+dd1+A A1+BB1+CC1 +DD1) R,


Если

w= a+bi+cj+dk+ Ae+BI+CJ+DK, w1 =a1+b1i+c1j+d1k+ A1e+B1I+C1J+D1K.

Пусть

w = u+ ve, w1 = u1+ v1e,

где u, u1 v, v1 - кватернионы. Так как

w=(u+ ve) (ū1 - v1e) = (u ū1+v)+(- v1u+ v1)e = (u ū1+v)(vu1 –v1u)e

а w1=( u1+ v1e) (ū - ve) = (u1ū+ v1) + (-vu1+v1u)e,

то сложив эти два равенства, получим:

w+ w1= (u ū1+v+u1ū+ v1) + (- v1u+ vu1 - vu1+v1u)e= (u ū1+u1ū +v + v1) + 0e = u ū1+u1ū +v + v1 .

В силу свойства 6) сопряженных кватернионов имеют место:

u ū1+u1ū =2 (aa1+bb1+cc1+dd1),

v + v1 = 2 (A A1+BB1+CC1 +DD1),

u = a+bi+cj+dk, u1 = a1+b1i+c1j+d1k,

v = A+Bi+Cj+Dk, v1 = A1+B1i+C1j+D1k.

Тогда из последних равенств следует

w+ w1= 2 (aa1+bb1+cc1+dd1+A A1+BB1+CC1 +DD1).



Информация о работе «Алгебра октав»
Раздел: Математика
Количество знаков с пробелами: 59578
Количество таблиц: 1
Количество изображений: 4

Похожие работы

Скачать
27082
0
0

... следующим образом. Пусть -наибольшая степень двойки, на которую делится число n. Разделим  на 4 с остатком. Обозначим через a неполное частное, а через b остаток. Тогда =4a+b, . Число p равно [5] 6. Приложение теоремы Гурвица В 1878 г. Немецкий математик Г. Фробениус доказал следующую замечательную теорему. Теорема Фробениуса. Любая ассоциативная алгебра с делением изоморфна одной из трех: ...

Скачать
261748
48
0

... занятий конспект лекций 03.02.97 5. Подготовка письменного отчета 06.02.97-29.02.97 6. Сдача диф. зачета 04.03.97-06.03.97 Общая характеристика базы практики. Педагогическая практика завершает психолго-педагогическую подготовку студентов нашего ВУЗа. Я проходил практику в средней школе № 60 (Зализнычный район города Киева).Школа ...

Скачать
482216
0
0

... Философия культуры. – М.: NOTA BENE, 2001. – 349 с. 5.  Додельцев Р.Ф. Концепция культуры З. Фрейда. – М.: Знание, 1989. – 60 с. 6.  Киссель М.А. Джамбаттиста Вико. – М.: Мысль, 1980. – 197 с. 7.  Культурологія. Українська та зарубіжна культура: Навч. посібник (М.М.Закович, І.А.Зязюн, О.М.Семашко та ін.). – з вид. – К.: Знання, 2007. – 567 с. 8.  Фрейд Зігмунд. Вступ до психоаналізу: Лекції ...

Скачать
24020
1
0

... четыре своеобразные аксиомы, из которых следует, что первые три из них обосновывают специальную теорию относительности, а при отказе от четвертой – Пуанкаре-инвариантности, мы получаем кватернионное описание пространства-времени. Но в [6] перспективные результаты получены именно при аналогичном отказе от фундаментальности 10-параметрической группы Пуанкаре. Поэтому аппарат кватернионов может быть ...

0 комментариев


Наверх