2. Напишите формулу разложения вектора по трем взаимно перпендикулярным осям координат.

3. Как определяется вектор через координаты его начала и конца?

Пусть известны координаты начала вектора А (x1, y1, z1) и его конца В (x2, y2, z2). Точки А и В определяют радиус вектора

z

 
 и .

рис. 3

Из треугольника ОАВ следует, что , отсюда .

Если обозначить через X, Y, Z - координаты вектора , т.е. = (X, Y, Z), то следует, что

X=х21

Y=у21

Z=z2-z1

Чтобы найти абсциссу вектора Х, необходимо из абсциссы конца вектора вычесть абсциссу начала вектора.

3. Какой вид имеет уравнение прямой в плоскости, проходящей через две точки?

4. Какой вид имеет уравнение прямой с угловым коэффициентом?

2 уровень

1. Напишите разложение вектора по трем взаимно перпендикулярным осям координат.

Координаты вектора X -2
Y 4
Z 7

A (-2, 4,7) означает, что абсцисса точки A x=-2, ордината у=4, аппликата z=7.

2. Чему равно скалярное произведение векторов и ? Данные для варианта взять из таблицы 2.3

Координаты вектора

X -2
Y 4
Z 7

Координаты вектора

X 3
Y 6
Z 4

Т.к. векторы заданы в координатной форме, то по формуле

имеем:

3. Найти уравнение прямой, проходящей через точку пересечения прямых l1 и l2 и отсекающей на оси абсцисс отрезок, равный d.

Уравнение прямой l1

Уравнение прямой l2

d Координаты точки Р
x y
3x-2y-7=0 x+3y-6=0 3 2 5

Отсюда находим х = 6 - 3у

x = 3

Значит точка пересечения двух прямых A (3;1)

По условия отрезок равен 3, значит координата точки B (3; 0).

Найдем уравнение прямой, проходящей через точки А и В.

Здесь знаменатель равен нулю. Полагаем числитель левой части равным нулю.

Получаем

4. Найти уравнение прямой, отсекающей на оси ординат отрезок, равный d и проходящей параллельно прямой l1.

Уравнение прямой l1

Уравнение прямой l2

d Координаты точки Р
x y
3x-2y-7=0 x+3y-6=0 3 2 5

Найдем две точки прямой 3x-2y-7=0

Подставим в уравнение х=1 и х=3 и получим значения у соответственно - 2 и 1.

A (1; - 2) и B (3;1).

Координаты направляющего вектора  найдём по координатам конца и начала вектора

  

Подставляя в формулу

координаты точки O (0;3)

И координаты вектора  получим искомое уравнение прямой

 или .


2 семестр 4 кредит 1 уровень.

1. Как определяются горизонтальные асимптоты функции?

В случае, если наклонная асимптота расположена горизонтально, то есть при $ k=0$, она называется горизонтальной асимптотой. Таким образом, горизонтальная асимптота - частный случай наклонной асимптоты; прямая y = с = const является горизонтальной асимптотой графика y = f (x) при  или , если

$\displaystyle \lim_{x\to+\infty}f(x)=с$

Или

$\displaystyle \lim_{x\to-\infty}f(x)=с$

соответственно.

2. Что такое частное приращение функции нескольких переменных?

Частной производной функции нескольких переменных по какой-нибудь переменной в рассматриваемой точке называется обычная производная по этой переменной, считая другие переменные фиксированными (постоянными). Например, для функции двух переменных  в точке  частные производные определяются так:

,

,

если эти пределы существуют.

Из определения следует геометрический смысл частной производной функции двух переменных: частная производная  - угловой коэффициент касательной к линии пересечения поверхности  и плоскости   в соответствующей точке.

3. Каковы выражения для частных дифференциалов функции z=f (x,y)?

Частной производной по x функции z = f (x,y) в точке M0 (x0,y0) называется предел ,

если этот предел существует. Обозначается эта частная производная любым из следующих символов:

; ; .

Частная производная по x есть обычная производная от функции z = f (x,y), рассматриваемой как функция только от переменной x при фиксированном значении переменной y.

Совершенно аналогично можно определить частную производную по y функции z = f (x,y) в точке M0 (x0,y0):

=.

Приведем примеры вычисления частных производных/

4. Каково выражение для полного дифференциала функции u=u (x,y,z)?

Полный дифференциал du функции u = f (x,y,z) (если он существует) равен сумме всех ее частных дифференциалов:

5. Напишите частные производные третьего порядка для функции z=f (x,y,z).

2 уровень

1. Найти частную производную и частный дифференциал функции.


2. Вычислить значения частных производных f’x (M0), f’y (M0), f’z (M0) для данной функции f (x,y,z) в точке M0 (x0,y0,z0) с точностью до двух знаков после запятой.

3. Вычислить значения частных производных функции z (x,y), заданной неявно, в данной точке M0 (x0,y0,z0) с точностью до двух знаков после запятой.

lnZ=x+2y-z+ln3 M0 (1,1,3)

4. Найти уравнение касательной плоскости и нормали к заданной поверхности S в точке M0 (x0,y0,z0). S: z=x2+y2-4xy+3x-15, M0 (-1,3,4)

Следовательно, уравнение касательной плоскости будет таким:

а уравнение нормали таким:


Информация о работе «Алгебраические уравнения»
Раздел: Математика
Количество знаков с пробелами: 9747
Количество таблиц: 9
Количество изображений: 1

Похожие работы

Скачать
31486
0
15

... - в методе Ньютона наблюдается ускорение сходимости процесса приближений. 5. Метод касательных (метод Ньютона) Метод касательных, связанный с именем И. Ньютона, является одним из наиболее эффективных численных методов решения уравнений. Идея метода очень проста. Возьмём производную точку x0 и запишем в ней уравнение касательной к графику функции f(x): y=f(x0)+ f ¢(x) (x-x0) (1.5) Графики ...

Скачать
43593
0
0

... решения от численных методов расчёта. Для определения корней уравнения не требуется знания теорий групп Абеля, Галуа, Ли и пр. и применения специальной математической терминологии: колец, полей, идеалов, изоморфизмов и т.д. Для решения алгебраического уравнения n - ой степени нужно только умение решать квадратные уравнения и извлекать корни из комплексного числа. Корни могут быть определены с ...

Скачать
20751
0
13

... «проявляется» лишь в процессе преобразований. Очевидность и «завуалированность» новой переменной мы рассмотрим на конкретных примерах во второй главе данной работы. 2. Возможности применения метода замены неизвестного при решении алгебраических уравнений В этой главе выявим возможности применения метода замены неизвестного при решении алгебраических уравнений в стандартных и нестандартных ...

Скачать
24924
0
20

... , но выбор перехода к системе x=(x) зависит от типа конкретной решаемой системы линейных алгебраических уравнений. 6. Заключение В данной курсовой работе был реализован метод простой итерации для решения систем линейных алгебраических уравнений в виде двух программ, каждая из которых использует свой собственный способ перехода от системы вида F(x)=x к системе вида x=(x). Вообще говоря, ...

0 комментариев


Наверх