Министерство образования Российской Федерации
Кафедра алгебры и математической логики
РЕФЕРАТ
на тему «Алгоритм муравья»
2009 г.
Содержание
Введение.
1 Идея алгоритма.
2 Пошаговое описание общей схемы
3 Муравей
4 Начальная популяция
5 Движение муравья
6 Путешествие муравья
7 Испарение фермента
8 Повторный запуск
9 Блок-схема алгоритма
10 Демонстрационный пример
11 Характерные особенности
12 Области применения
Заключение
Список литературы
Введение
Каждый, кто хоть раз в жизни наблюдал за муравьями, обязательно должен был заметить: вся деятельность этих насекомых имеет ярко выраженную групповую окраску. Работая вместе, группа муравьев способна затащить в муравейник кусок пищи или строительного материала, в 10 раз больше них самих. Организацию муравьев можно применять и людям в решении некоторых задач. Сам по себе муравей - достаточно примитивное существо. Все его действия, по сути, сводятся к элементарным инстинктивным реакциям на окружающую обстановку и своих собратьев. Однако несколько муравьев вместе образуют сложную систему. Например, группа муравьев прекрасно умеет находить кратчайшую дорогу к пище. Если какое-нибудь препятствие - палка, камень, нога человека - встает на пути, они быстро находят новый оптимальный маршрут. Муравьи решают проблемы поиска путей с помощью химической регуляции. Каждый муравей выделяет феромоны, и их след образует, таким образом, путь муравья. Другой муравей, почуяв след на земле, устремляется по нему. Чем больше по одному пути прошло муравьев - тем явнее след, а чем явнее след - тем большее «желание» пойти в ту же сторону возникает у муравьев. Поскольку муравьи, нашедшие самый короткий путь к цели, тратят меньше времени на путь туда и обратно, их след быстро становится самым заметным. Он привлекает большее число муравьев, и круг замыкается. Остальные пути - менее используемые - потихоньку пропадают. Алгоритмы муравья (Ant algorithms), или оптимизация по принципу муравьиной колонии (это название было придумано изобретателем алгоритма, Марко Дориго (Marco Dorigo)), основаны на применении нескольких агентов и обладают специфическими свойствами, присущими муравьям, и используют их для ориентации в физическом пространстве. Алгоритмы муравья особенно интересны потому, что их можно использовать для решения не только статичных, но и динамических проблем, например, в изменяющихся сетях.
Мы рассмотрим общий случай алгоритма муравьиной колонии.
1. Идея алгоритма
Два муравья из муравейника должны добраться до пищи, которая находится за препятствием. Во время перемещения каждый муравей выделяет немного феромона, используя его в качестве маркера.
Рис. 1.
При прочих равных каждый муравей выберет свой путь. Первый муравей выбирает верхний путь, а второй - нижний. Так как нижний путь в два раза короче верхнего, второй муравей достигнет цели за время t1. Первый муравей в этот момент пройдет только половину пути (рис. 2).
Когда один муравей достигает пищи, он берет один из объектов и возвращается к муравейнику по тому же пути. За время t2 второй муравей вернулся в муравейник с пищей, а первый муравей достиг пищи (рис. 3).
При перемещении каждого муравья на пути остается немного феромона. Для первого муравья за время t0t2 путь был покрыт феромонами только один раз. В то же самое время второй муравей покрыл путь феромонами дважды. За время t4 первый муравей вернулся в муравейник, а второй муравей уже успел еще раз сходить к еде и вернуться. При этом концентрация феромона на нижнем пути будет в два раза выше, чем на верхнем. Поэтому первый муравей в следующий раз выберет нижний путь, поскольку там концентрация феромона выше.
Рис. 2. Рис. 3.
В этом и состоит базовая идея алгоритма муравья - оптимизация путем непрямой связи между автономными агентами.
2. Пошаговое описание общей схемы
Предположим, что окружающая среда для муравьев представляет собой полный неориентированный граф. Каждое ребро имеет вес, который обозначается как расстояние между двумя вершинами, соединенными им. Граф двунаправленный, поэтому муравей может путешествовать по грани в любом направлении (рис. 4).
Рис. 4.
Вероятность включения ребра в маршрут отдельного муравья пропорциональна количеству феромонов на этом ребре, а количество откладываемого феромона пропорционально длине маршрута. Чем короче маршрут тем больше феромона будет отложено на его ребрах, следовательно, большее количество муравьев будет включать его в синтез собственных маршрутов. Моделирование такого подхода, использующего только положительную обратную связь, приводит к преждевременной сходимости – большинство муравьев двигается по локально-оптимальному маршруту. Избежать этого можно моделируя отрицательно обратную связь в виде испарения феромона. Причем, если феромон испаряется быстро, то это приводит к потере памяти колонии и забыванию хороших решений, с другой стороны, большое время испарений может привести к получению устойчивого локального оптимального решения.
... казалось принципиально невозможным. Очевидно, что эксперимент, опирающийся на традиционные способы поиска электромагнитных сигналов, не смог бы обнаружить этот канал. Почему же нельзя предположить, что распределенный мозг использует какой-то неизвестный нам способ передачи информации по каналу электромагнитных колебаний? С другой стороны, в повседневной жизни можно найти примеры передачи ...
... , 2004. – 382 с. 2. Инновационный менеджмент: Учеб. пособие / Под ред. В.М. Аньшина, А.А. Дагаева. – М.: Дело, 2003.- 528 с. Темы 12. Финансирование в инновационном менеджменте Лекция № 16 (к.т.н. Старовойтенко О.А.) План 12.1.Организационно - экономическое стимулирование нововведений. 12.2.Финансирование и кредитование нововведений. 12.3. Модели рынка нововведений и научно- ...
... системы развивающего обучения - свойства вариантности, учитывающего прежде всего индивидуальные особенности школьников. самоконтроль школьник тестовый орфографический Глава 3. Опытно-экспериментальная работа по формированию навыков орфографического самоконтроля у младших школьников на уроках русского языка Опытно-экспериментальная работа по проверке теоретически выделенных методов и ...
змы по-прежнему превосходили электронные, нам придётся поискать способ объединить компьютеры и человеческий мозг, либо попытаться искусственным путём усовершенствовать собственные гены. (Подробнее об этом рассказывается здесь) Впрочем, такие проекты пока остаются фантастикой. До их реализации пока ещё очень далеко, а пока главным предназначением устройств, подобных созданной в Мюнхене нейросхеме, ...
0 комментариев