Задача №1

Даны вершины треугольника АВС.

Найти: 1) длину стороны АВ; 2) уравнения сторон АВ и АС и их угловые коэффициенты; 3) внутренний угол А в радианах с точностью до 0,01; 4) уравнение высоты CD и ее длину; 5) уравнение окружности, для которой высота CD есть диаметр; 6) систему линейных неравенств, определяющих треугольник АВС.

А(-7;5), В(5;-4), С(3;10).

Решение

1. Расстояние d между точками M1(x11) и М222) определяется по формуле:

Подставив в эту формулу координаты точек А и В имеем:

2. Уравнение прямой, проходящей через точки М111) и М222), имеет вид:

Подставив в формулу (2) координаты точек А и В, получим уравнение прямой АВ:

Для нахождения углового коэффициента kab прямой АВ разрешим полученное уравнение относительно у:

Отсюда

kab = - 3/4.

Подставив в формулу (2) координаты точек А и С, найдем уравнение прямой АС.

Для нахождения углового коэффициента k прямой АС разрешим полученное уравнение относительно у:

Отсюда

k = 1/2.

3. Угол α между двумя прямыми, угловые коэффициенты которых равны k1 и k2, определяется по формуле:

 

Угол А, образованный прямыми АВ и АС, найдем по формуле (3), подставив в нее

k1= kab = -3/4, k2 = kac = 1/2.

< А = arctg 2 = 1,11 рад.

4. Так как высота CD перпендикулярна стороне АВ, то угловые коэффициенты этих прямых обратны по величине и противоположны по знаку, т.е.

Уравнение прямой, проходящей через данную точку М111) в заданном угловом коэффициенте k имеет вид:

у – у1 = k(х – х1).(4)

Подставив в формулу (4) координаты точки С и kcd = 4/3, получим уравнение высоты CD:


у – 10 = 4/3(х – 3) , у – 10 = 4/3х – 4 , 4х – 3у + 18 = 0. (CD)

Для нахождения длины CD определим координаты точки D, решив систему уравнений (АВ) и (СD):

Подставив в формулу (1) координаты точек C и D, находим:

СD= √(-3 -3)2 + (2 -10)2 = √36 + 64 = 10 .

5. Уравнение окружности радиуса R с центром в точке E(a;b) имеет вид:

(х – а)2 + (у – b)2 = R2 (5)

Так как СD является диаметром искомой окружности, то ее центр Е есть середина отрезка CD. Воспользовавшись формулами деления отрезка пополам, получим:

Следовательно E(0;6) и R = CD/2 = 5. Используя формулу (5), получим уравнение искомой окружности:

(х – 0)2 + (у – 6)2 = 25, х2 + (у – 6)2 = 25.

6. Множество точек треугольника АВС есть пересечение трех полуплоскостей, первая из которых ограничена прямой АВ и содержит точку С, вторая прямая ВС и содержит точку А, а третья ограничена прямой АС и содержит точку В. Для получения неравенства, определяющего полуплоскость, ограниченную прямой АВ и содержащую точку С, подставим в уравнение прямой АВ координаты точки С:

3* 3+ 4*10 +1 = 50 > 0.

поэтому искомое неравенство имеет вид:

3х + 4у +1 ≥ 0.

Для составления неравенства, определяющего полуплоскость, ограниченную прямой ВС и содержащую точку А, найдем уравнение прямой ВС, подставив в формулу (2) координаты точек В и С:

Подставив в последнее уравнение координаты точки А, имеем:

7* (- 7) + 5 – 31 = - 75 < 0.

Искомое неравенство будет

7х + у – 31 ≤ 0.

Подобным образом составим неравенство, определяющее полуплоскость, ограниченную прямой АС и содержащую точку В:

5 – 2(- 4) + 17 = 30 > 0.


Третье искомое неравенство

х – 2у + 17 ≥ 0.

Итак, множество точек треугольника АВС определяется системой неравенств:

Задача №2

Даны векторы a1 , a2 , a3 , b . Показать, что векторы a1 , a2 , a3 образуют базис трехмерного пространства и найти координаты вектора b в этом базисе.

a1(5;3;1) , а2(-2;-1;2) , а3(-2;1;4) , b(3;0;1)

Решение

1. Система векторов  в пространстве Rn линейно независима тогда и только тогда, когда отличен от нуля определитель, строками (столбцами) которого являются координаты векторов системы:

Подставив в формулу (1) координаты векторов a1 , a2 , a3 найдем определитель:


Так как определитель не равен нулю, то данные три вектора являются линейно независимыми. Соответственно они образуют базис трехмерного пространства.


Информация о работе «Дифференциальные уравнения»
Раздел: Математика
Количество знаков с пробелами: 11106
Количество таблиц: 0
Количество изображений: 8

Похожие работы

Скачать
40401
0
0

... условий: y(x0)=y0, . Эти начальные условия дают соответственно n уравнений , , , ……………………………… , решая которые относительно c1, c2 , …, cn находят значения этих постоянных. Например, для дифференциального уравнения 1-го порядка общее решение имеет вид y=f(x,c). Тогда начальное условие y(x0)=y0 выделяет из всего семейства интегральных кривых кривую, проходящую через точку M(x0,y0). Геометрическая ...

Скачать
33175
0
0

... bo=31,20 Запишем это уравнение в стандартной форме. Для этого разделим (1) на ao: - +y(t)=g(t) -T1 +y(t)=kg(t) (2), где k=-коэффициент передачи, T1=,T22=-постоянные времени. Если корни характеристического уравнения для дифференциального уравнения 2-го порядка комплексные (это выполняется при T1<2T2), то оно является колебательным. Проверим это для нашего уравнения: T1=0,042 2T2=0,14 ...

Скачать
12179
0
4

... уравнение в виде: или, обозначив с/m через k2, (1) Полученное уравнение определяет так называемые свободные колебания груза. Оно называется уравнением гармонического осциллятора. Это линейное дифференциальное уравнение второго порядка с постоянными коэффициентами. Его характеристическое уравнение: имеет мнимые корни , соответственно этому общее решение Для выяснения ...

Скачать
22411
1
13

... шаг интегрирования ; tp – время интегрирования трех точечным методом прогноза и коррекции , ta – время интегрирования по методу Адамса-Башфорта , NU – массив начальных условий . Данная процедура способна производить решения систем линейных дифференциальных уравнений произвольного размера , на произвольном промежутке времени интегрирования . Вычисленные данные записываются в файлы prandcom*.df . ...

0 комментариев


Наверх