Вычислим координаты вектора b в новом базисе. А – матрица перехода

11106
знаков
0
таблиц
8
изображений

2. Вычислим координаты вектора b в новом базисе. А – матрица перехода.

b = А * bnew

Нам необходимо определить координаты bnew.

bnew = A-1 * b(2)

Для нахождения обратной матрицы применяется формула

Необходимо найти все элементы для составления обратной матрицы:

 

Подставляем полученные элементы в формулу (3) и найдем А-1:


Подставив значения А-1 и вектора b в формулу (2), найдем координаты вектора b в новом базисе:

Задача №3

Систему уравнений записать в матричной форме и решить ее с помощью обратной матрицы:

Решение

Обозначим через матрицу А – матрицу коэффициенты при неизвестных; Х – матрицу-столбец неизвестных Х, У, Z; H – матрицу-столбец свободных членов:

С учетом этих обозначений данная система уравнений принимает следующую матричную форму:

А*Х = Н(1)

Если матрица А – невырожденная (ее определитель Δ отличен от нуля), то она имеет обратную матрицу А-1. Умножив обе части уравнения (1) на А-1, получим:

А-1 * А * Х = А-1 * Н

Но А-1 * А = Е (Е- единичная матрица), а ЕХ = Х, поэтому

Х = А-1 * Н(2)

Равенство (2) называется матричной записью решения системы линейных уравнений. Для нахождения решения системы уравнений необходимо вычислить обратную матрицу А-1.

Пусть имеем невырожденную матрицу

где Аij (i=1,2,3; j=1,2,3) – алгебраическое дополнение элемента аij в определителе матрицы А, которое является произведением (- 1)ij на минор (определитель) второго- порядка, полученный вычеркиванием i-строки и j-столбца в определителе матрицы А.

Вычислим определитель Δ и алгебраические дополнения Аij элементов матрицы А.

Следовательно матрица А имеет обратную матрицу А-1.

Тогда

По формуле (2) находим решение данной системы уравнений в матричной форме:

Отсюда

х = - 1; у = 1; z = 0.

Задача №4

Вычислить пределы.


Решение

а) Подстановка предельного значения аргумента х = 3 приводит к неопределенному выражению вида .

Для устранения этой неопределенности разложим числитель и знаменатель дроби на множители и сократим на множитель (х – 3). Такое сокращение здесь возможно, так как множитель (х – 3) отличен от нуля при х →3:

б) При х→∞ выражение  дает неопределенность вида  . Для устранения этой неопределенности применим правило Лопиталя. Для разыскания предела отношения двух функций, бесконечно больших при х→∞, можно рассматривать отношение их производных .Если оно стремится к пределу (конечному или бесконечному), то к тому же пределу стремится и отношение  .


в) Обозначим arctg 3х = у. Тогда 3х = tg у и у→0 при х→0. Применяя свойства пределов и формулу первого замечательного предела lim sin α/ α = 1, имеем:

 

г)При х→∞ выражение является неопределенностью вида 1. Для устранения этой неопределенности представим основание степени в виде суммы 1 и бесконечно малой при х→∞ величины и применим формулу второго замечательного предела:

Тогда имеем:

Пусть 3х – 1 = - у . Тогда 6х + 4 = - 2у + 6 и у→ -∞ при х→∞. Переходя к переменной у, получим:

Задача №5

Найти производные функций:

Решение

а) Последовательно применяя правило дифференцирования сложной функции, правила и формулы дифференцирования, имеем:

в) В данном случае функциональная зависимость задана в неявном виде. Для нахождения производной у′ нужно продифференцировать по переменной х обе части уравнения, считая при этом у функцией от х, а затем полученное уравнение разрешить относительно у′ .

2у′ + еху (у + ху′) = 0, 3у2у′ + уеху + хеху у′ = 0,

Из последующего уравнения находим у′:

у′ (3у2 + хеху) + уеху = 0,


Задача №6

Исследовать функцию методами дифференциального исчисления и построить ее график. Исследование функции рекомендуется проверить по следующей схеме:

1) найти область определения функции;

2) исследовать функцию на непрерывность;

3) определить, является ли данная функция четной, нечетной;

4) найти интервалы возрастания и убывания функции и точки ее экстремума;

5) найти интервалы выпуклости и вогнутости графика функции и точки перегиба;

6) найти асимптоты графика функции.

Решение

1. Функция определена при всех значениях аргумента х.

2. Данная функция является элементарной, поэтому она непрерывна на своей области определения, т.е. на интервале (- ∞; ∞).

3. Для установления четности и нечетности функции проверим выполнимость равенств f(- х) = f( х) (тогда f( х) – четная функция) или f(-x) = - f(х) (для нечетной функции) для любых х и – х из области определения функции:

Следовательно, f(-х) ≠ f(x) и f(-х) ≠ -f(х), то есть данная функция не является ни четной, ни нечетной.

4. Для исследования функции на экстремум найдем ее первую производную:

у′ = 0 при х1 = - 3, х2 = 3. Тем самым имеем две критические точки, обе принадлежать области определения функции.

Разобьем числовую ось на три интервала: (- ∞; - 3), (- 3; 3), (3; ∞).

В первом и третьем интервалах первая производная отрицательна, следовательно, здесь функция убывает, во втором интервале – положительна и данная функция возрастает. При переходе через точку х = -3 первая производная меняет свой знак с минуса на плюс, поэтому в этой точке функция имеет минимум:

уmin = у(-3) = 0

Значит, А(-3;0) – точка минимума.

При переходе через точку х = 3 первая производная меняет свой знак с плюса на минус, поэтому в этой точке функция имеет максимум:

уmax = у(3) = 2

Значит, В(3;2) – точка максимума.

На рис. 1 знаками +, - указаны интервалы знакопостоянства производной у′, а стрелками – возрастание и убывание исследуемой функции.

5. Для определения точек перегиба графика и интервалов выпуклости и вогнутости кривой найдем вторую производную:

у′′ = 0 при х1 = 0, х2 = - 3√3 , х3 = 3√3.

Разобьем числовую ось на четыре интервалы: (-∞;-3√3), (-3√3 ;0), (0;3√3), (3√3 ; ∞).

рис.2

На первом, втором и четвертом интервалах вторая производная у′′ положительна и дуга исследуемой кривой вогнута; на третьем интервале у′′ отрицательна – дуга выпукла.

При переходе через точки х = 0 у′′ меняет свой знак, поэтому х= 0 – абсцисса точки перегиба.

Следовательно С(0;1) – точка перегиба графика функции.

При переходе через точку х = 3√3 у′′ меняет свой знак, поэтому х= 3√3 - абсцисса точки перегиба.

Следовательно – точка перегиба графика функции.

6. Так как точек разрыва у данной функции нет, соответственно вертикальной асимптоты она не имеет. Для определения уравнения наклонной асимптоты у=kx + b воспользуемся формулами:

Тогда

При вычислении пределов использовалось правило Лопиталя.

у=kx + b, у= 0*х + 1 = 1

Значит прямая у=1 есть горизонтальная асимптота графика исследуемой функции.

рис. 3


Задача №7

Найти неопределенные интегралы и результаты интегрирования проверить дифференцированием.

Решение

а) Применяя свойства неопределенного интеграла и формулы табличных интегралов имеем:

Задача №8

Вычислить объем тела, образованного вращением оси ОХ фигуры, ограниченной линиями ху=4; х=1; х=4; у=0. Сделать чертеж.

Решение

Объем тела, образованного вращением оси ОХ фигуры, ограниченной линиями определяется по формуле:

Подставим в формулу (1) у = 4/х, х1 = 1, х2 = 4, получим:

 

 

Ответ: объем тела вращения равен 12π


Информация о работе «Дифференциальные уравнения»
Раздел: Математика
Количество знаков с пробелами: 11106
Количество таблиц: 0
Количество изображений: 8

Похожие работы

Скачать
40401
0
0

... условий: y(x0)=y0, . Эти начальные условия дают соответственно n уравнений , , , ……………………………… , решая которые относительно c1, c2 , …, cn находят значения этих постоянных. Например, для дифференциального уравнения 1-го порядка общее решение имеет вид y=f(x,c). Тогда начальное условие y(x0)=y0 выделяет из всего семейства интегральных кривых кривую, проходящую через точку M(x0,y0). Геометрическая ...

Скачать
33175
0
0

... bo=31,20 Запишем это уравнение в стандартной форме. Для этого разделим (1) на ao: - +y(t)=g(t) -T1 +y(t)=kg(t) (2), где k=-коэффициент передачи, T1=,T22=-постоянные времени. Если корни характеристического уравнения для дифференциального уравнения 2-го порядка комплексные (это выполняется при T1<2T2), то оно является колебательным. Проверим это для нашего уравнения: T1=0,042 2T2=0,14 ...

Скачать
12179
0
4

... уравнение в виде: или, обозначив с/m через k2, (1) Полученное уравнение определяет так называемые свободные колебания груза. Оно называется уравнением гармонического осциллятора. Это линейное дифференциальное уравнение второго порядка с постоянными коэффициентами. Его характеристическое уравнение: имеет мнимые корни , соответственно этому общее решение Для выяснения ...

Скачать
22411
1
13

... шаг интегрирования ; tp – время интегрирования трех точечным методом прогноза и коррекции , ta – время интегрирования по методу Адамса-Башфорта , NU – массив начальных условий . Данная процедура способна производить решения систем линейных дифференциальных уравнений произвольного размера , на произвольном промежутке времени интегрирования . Вычисленные данные записываются в файлы prandcom*.df . ...

0 комментариев


Наверх