Введение
Под двойственной задачей понимается вспомогательная задача линейного программирования, формулируемая с помощью определённых правил непосредственно из условий прямой задачи. Заинтересованность в определении оптимального решения прямой задачи путём решения двойственной к ней задачи обусловлена тем, что вычисления при решении ДЗ могут оказаться менее сложными. Трудоёмкость вычислений при решении ЗЛП в большей степени зависит от числа ограничений, а не от количества переменных.
Целью курсового проекта является изучить литературу по выбранной теме и научиться применять на практике симплекс – метод для решения прямой и двойственной задачи линейного программирования, а также решить двойственную задачу линейного программирования с помощью программы MS Excel.
Курсовой проект состоит из введения, двух глав и заключения.
В первой главе рассматриваются основные понятия и предложения теории двойственности ЗЛП, виды математических моделей двойственных задач и их экономическая интерпретация.
Во второй главе рассматривается решение двойственной задачи с помощью программы MS Excel.
1. Двойственность в линейном программировании
1.1 Прямые и двойственные задачи линейного программирования
С экономической точки зрения двойственную задачу можно интерпретировать так: какова должна быть цена единицы каждого из ресурсов, чтобы при заданных количествах ресурсов biи величинах стоимости единицы продукции Cjминимизировать общую стоимость затрат? А исходную задачу определим следующим, образом: сколько и какой продукции xj(j=1,2,…, n) необходимо произвести, чтобы при заданных стоимостях Cj (j=1,2,…, n) единицы продукции и размерах имеющихся ресурсов bi(i=1,2,…, n) максимизировать выпуск продукции в стоимостном выражении. Большинство задач линейного программирования изначально определяются как исходные или двойственные задачи. Сделав вывод можно говорить о паре двойственных задач линейного программирования.
Каждой задаче линейного программирования можно определенным образом сопоставить некоторую другую задачу (линейного программирования), называемую двойственной или сопряженной по отношению к исходной или прямой задаче. Дадим определение двойственной задачи по отношению к общей задаче линейного программирования, состоящей, как мы уже знаем, в нахождении максимального значения функции:
F=c1x1+c2x2+…cnxn
при условиях
Сравнивая две сформулированные задачи, видим, что двойственная задача составляется согласно следующим правилам:
1. Целевая функция исходной задачи задается на максимум, а целевая функция двойственной на минимум.
2. Матрица
составленная из коэффициентов при неизвестных в системе ограничений исходной задачи, и аналогичная матрица
в двойственной задаче получаются друг из друга транспонированием (т.е. заменой строк столбцами, а столбцов – строками).
3. Число переменных в двойственной задаче равно числу ограничений в системе исходной задачи, а число ограничений в системе двойственной задачи – числу переменных в исходной задаче.
4. Коэффициентами при неизвестных в целевой функции двойственной задачи являются свободные члены в системе исходной задачи, а правыми частями в соотношениях системы двойственной задачи – коэффициенты при неизвестных в целевой функции исходной задачи.
5. Если переменная xj исходной задачи может принимать только лишь положительные значения, то j-е условие в системе двойственной задачи является неравенством вида «>». Если же переменная xj может принимать как положительные, так и отрицательные значения, то 1 – соотношение в системе представляет собой уравнение. Аналогичные связи имеют место между ограничениями исходной задачи и переменными двойственной задачи. Если i – соотношение в системе исходной задачи является неравенством, то i-я переменная двойственной задачи . В противном случае переменная уj может принимать как положительные, так и отрицательные значения.
Двойственные пары задач обычно подразделяют на симметричные и несимметричные. В симметричной паре двойственных задач ограничения прямой задачи и соотношения двойственной задачи являются неравенствами вида « «. Таким образом, переменные обеих задач могут принимать только лишь неотрицательные значения.
Двойственная задача тесно связана задачей линейного программирования. Задача первоначальная называется исходной. Решение двойственной задачи может быть получено из решения исходной и наоборот. Связующим фактом этих двух задач являются коэффициенты Cj функции исходной задачи. Данные коэффициенты называются свободными членами системы ограничений двойственной задачи. Коэффициенты Biсистемы ограничений исходной задачи называются коэффициентами двойственной задачи. Транспонированная матрица коэффициентов системы ограничений исходной задачи является матрицей коэффициентов системы ограничений двойственной задачи.
Рассмотрим задачу использования ресурсов. У предприятия есть t видов ресурсов в количестве bi (i=1, 2,…, m) единиц, из которых выпускается n видов продукции. На изготовление 1 ед. i-й продукции тратится aij ед. t-гo ресурса, ее стоимость составляет Cjед. Необходимо определить план выпуска продукции, обеспечивающий ее максимальный выпуск в стоимостном выражении. Примем за xj (j=1,2,…, n) количество ед. j-й продукций и составляет максимальное значение линейной функции
Z=C1x1+C2x2+ … +Cnxn
Определим ресурсы, которые потребуются для изготовления товара. Обозначим за единицу стоимости ресурсов единицу стоимости выпускаемого товара. А через уi (j=1,2,…, m) стоимость единицы i-го ресурса. Т.е. стоимость всех затраченных ресурсов, которые используются для изобретения единицы j-й продукции, составляет. Цена израсходованных ресурсов не должна превышать цены окончательного товара.
... , доставляющий наибольшее значение целевой функции по сравнению с любым другим допустимым вектором , т.е. , называется решением задачи, или оптимальным планом. Максимальное значение целевой функции называется значением задачи. Двойственная задача линейного программирования. Рассмотрим задачу ЛП (1) или, в матричной записи, (2) Задачей, двойственной к (1) (двойственной задачей), называется ...
... . При этом значения cij соответствуют коэффициентам целевой функции исходной замкнутой транспортной задачи (1) и в последующем не изменяются. Элементы xij соответствуют значениям переменных промежуточных решений транспортной задачи линейного программирования и изменяются на каждой итерации алгоритма. Если в некоторой ячейке xij=0, то такая ячейка называется свободной, если же xij>0, то такая ...
... . 1.3. Построение ограничений и градиента целевой функции : 1.4. Область допустимых решений – отрезок AB. 1.5. Точка А – оптимальная. Координаты т. А: ; ; . 2. Решение задачи линейного программирования симплекс-методом. Прямая задача. Задачу линейного программирования для любой вершины в компактной форме можно представить в виде: Для получения используем алгоритм, приведённый в ...
... положит в такой симплекс-таблице текущие базисные переменные равными Ai,0, а свободные - нулю, то будет получено оптимальное решение. Практика применения симплекс метода показала, что число итераций, требуемых для решения задачи линейного программирования обычно колеблется от 2m до 3m, хотя для некоторых специально построенных задач вычисления по правилам симплекс метода превращаются в прямой ...
0 комментариев