1.3 Виды математических моделей двойственных задач

Основываясь на рассмотренных несимметричных и симметричных двойственных задач отметим, что пары двойственных задач математических моделей могут быть представлены следующим образом:

·                    Симметричные задачи

(1) Исходная задача Двойственная задача

Zmin=CX; fmax =Y>A0;

AX=A0; YA=С

X>0 Y>0

(2) Исходная задача Двойственная задача

Zmax =CX; fmin =YA0;

AX=A0; YA=С

X>0 Y>0

·                    Несимметричные задачи

(3) Исходная задача Двойственная задача

Zmin=CX; fmax=YA0;

AX=A0; YA=С

X>0

(4) Исходная задача Двойственная задача

Zmax=CX; fmin=YA0;

AX=A0; YA=С

X>0

Поэтому до того, как сформулировать двойственную задачу для данной исходной, необходимо систему ограничений исходной задачи преобразовать должным образом.

1.4 Двойственный симплексный метод

Для получения решения исходной задачи можно перейти к двойственной. А используя оценки ее оптимального плана, можно определить оптимальное решение исходной задачи.

Если рассмотреть первую симплексную таблицу с единичным дополнительным базисом, тогда переход к двойственной задаче не обязателен. Это связано с тем, что в столбцах определена исходная задача, а в строках – двойственная.

bi являются оценками плана двойственной задачи. Сjявляются оценками плана исходной задачи.

Найдем решение двойственной задачи по симплексной таблице. В симплексной таблице прописана исходная задача. Также определим оптимальный план двойственной задачи. Также найдем и оптимальный план исходной задачи.

Такой метод принято называть двойственным симплексным методом.

Допустим нужно определить исходную задачу линейного программирования, которая поставлена в общем виде: минимизировать функцию Z=СХ при АХ=A0, Х>0. Значит в двойственной задаче следует максимизировать функцию f=YA0 при YA>С. Пусть определен следующий базис D=(A1, А2,…, Аi,…, Аm), причем в нем хотя бы одна из компонент вектора Х=D-1A0=(x1, x2,…, xi,…, xm) отрицательная. Для всех векторов Aj используется следующее соотношение Zj–Cj >0 (i=1,2,…, n).

Пользуясь теоремой двойственности, Y=СбазD-1является планом двойственной задачи. Этот план не оптимальный. Потому что оценки оптимального плана двойственной задачи должны быть неотрицательными и выбранный базис X содержит отрицательную компоненту и не является планом исходной задачи, а с другой стороны.

Поэтому, следует исключить из базиса исходной задачи вектор Аi, который соответствует компоненте xi<0. Данный вектор относится к отрицательной оценке, его необходимо включить в базис двойственной задачи.

Просматриваем i-ю строку для выбора вектора, включаемого в базис исходной задачи. Т.е. если строка не имеет xij<0, тогда линейная функция двойственной задачи не ограничена на многограннике решений. Поэтому нет решений исходной задачи.

В противном случае для столбцов, имеющих отрицательные значения, определяем q0j=min(xi/xij)>0. Также находим вектор, который соответствует minq0j(Zj–Cj) при решении исходной задачи на максимум, а также maxq0j(Zj–Cj) при значении исходной задачи на минимум.

Найденный вектор включаем в базис исходной задачи. Направляющей строкой определяется вектор, который надо убрать из базиса исходной задачи.

Допустим, что q0j=min(xi/xij)=0, т.е. xi=0, тогда xij выбирается как разрешающий элемент, но лишь тогда, когда xij>0.

Данный подход к решению задачи не приводит к росту количества отрицательных компонент вектора X. Пока не будет получено Х>0, процесс не прекращается.

Определяя оптимальный план двойственной задачи, находим и оптимальный план исходной задачи.

Используя при решении, алгоритм двойственного симплексного метода условие Zj–Cj>0 допускается не учитывать, пока не будут исключены все хi<0.

Обычным симплексным методом определяется оптимальный план. Этот метод обычно используется при условии, что все хi<0. Чтобы перейти к плану исходной, задачи за одну итерацию надо определить q0j=max(xi/xij)>0.

Задачи линейного программирования можно решать двойственным симплексным методом. Системы ограничений в задачах при положительном базисе имеют свободные члены любого знака. Двойственный симплексный метод позволяет значительно уменьшить размеры симплексной таблицы и количество преобразований системы ограничений.



Информация о работе «Двойственность в линейном программировании»
Раздел: Экономико-математическое моделирование
Количество знаков с пробелами: 27038
Количество таблиц: 6
Количество изображений: 6

Похожие работы

Скачать
4536
0
5

... , доставляющий наибольшее значение целевой функции по сравнению с любым другим допустимым вектором , т.е. , называется решением задачи, или оптимальным планом. Максимальное значение целевой функции называется значением задачи. Двойственная задача линейного программирования. Рассмотрим задачу ЛП (1) или, в матричной записи, (2) Задачей, двойственной к (1) (двойственной задачей), называется ...

Скачать
62893
11
17

... . При этом значения cij соответствуют коэффициентам целевой функции исходной замкнутой транспортной задачи (1) и в последующем не изменяются. Элементы xij соответствуют значениям переменных промежуточных решений транспортной задачи линейного программирования и изменяются на каждой итерации алгоритма. Если в некоторой ячейке xij=0, то такая ячейка называется свободной, если же xij>0, то такая ...

Скачать
25011
8
6

... . 1.3. Построение ограничений и градиента целевой функции : 1.4. Область допустимых решений – отрезок AB. 1.5. Точка А – оптимальная. Координаты т. А: ; ; . 2. Решение задачи линейного программирования симплекс-методом. Прямая задача. Задачу линейного программирования для любой вершины в компактной форме можно представить в виде: Для получения используем алгоритм, приведённый в ...

Скачать
36149
6
0

... положит в такой симплекс-таблице текущие базисные переменные равными Ai,0, а свободные - нулю, то будет получено оптимальное решение. Практика применения симплекс метода показала, что число итераций, требуемых для решения задачи линейного программирования обычно колеблется от 2m до 3m, хотя для некоторых специально построенных задач вычисления по правилам симплекс метода превращаются в прямой ...

0 комментариев


Наверх