3.1.4 Использование ограниченности функции
Если при решении уравнения удается показать, что для всех из некоторого множества М справедливы неравенства и , то на множестве М уравнение равносильно системе уравнений: .
Пример 1. Решить уравнение .
Решение. Функции, стоящие в разных частях уравнения, определены на . Для любого . Следовательно, данное уравнение равносильно системе уравнений
.
Решим второе уравнение системы:
; ;
Тогда
Проверка показывает, что 0 является корнем данного уравнения, а -1-не является.
О т в е т:{0}.
Пример 2. Решить уравнение
Решение. Оценим подкоренные выражения.
Следовательно, ,
Т.к. первое слагаемое левой части исходного уравнения ограничено снизу единицей, а второе слагаемое-3, то их сумма ограничена снизу 4. Тогда левая часть уравнения становится равной правой части уравнения при .
О т в е т:{2}.
3.2 Применение производной
В вышеприведенных уравнениях были рассмотрены применения некоторых свойств функции, входящих в уравнение. Например, свойства монотонности, ограниченности, существования наибольшего и наименьшего значений и т.д. Иногда вопрос о монотонности, об ограниченности и, в особенности, о нахождении наибольшего и наименьшего значений функции элементарными методами требует трудоемких и тонких исследований, однако он существенно упрощается при применении производной. (Например, не всегда можно догадаться, как и какое неравенство применить из «классических»).
Рассмотрим применение производной при решении уравнений.
3.2.1 Использование монотонности функции
В дальнейшем мы будем пользоваться следующими утверждениями:
1) если функция f(x) имеет положительную производную на промежутке М, то эта функция возрастает на этом промежутке;
2) если функция непрерывна на промежутке и имеет внутри промежутка положительную (отрицательную) производную, то эта функции возрастает ( убывает) на промежутке;
3) если функция имеет на интервале (а;b) тождественно равную нулю производную, то эта функция есть постоянная на этом интервале.
Пример 1. Решить уравнение
Решение. Рассмотрим функцию
.
На этом промежутке непрерывна, внутри его имеет производную:
Эта производная положительна внутри промежутка . Поэтому функция возрастает на промежутке М. Следовательно, она принимает каждое свое значение в одной точке. А это означает, что данное уравнение имеет не более одного корня. Легко видеть, что -1 является корнем данного уравнения и по сказанному выше других корней не имеет.
О т в е т:
... введение нового(новых) неизвестного. Пример 2. Обозначим , тогда а) Уравнение примет вид: Корень не удовлетворяет условию Ответ: 76. Методы решения иррациональных уравнений. Методы решения иррациональных уравнений, как правило основаны на возможности замены (с помощью некоторых преобразований) иррационального уравнения рациональным уравнением, которое либо равносильно исходному, либо ...
... , т.к. . б) , т.к. . в) . Выясним, при каких n выражения под знаком модуля меняют знак: n=-1, n=1, n=0. 1) Если n<-1, то 2) Если -1£n<0, то 3) Если 0<n<1, то 4) Если n³1, то Ответ: II. Иррациональные уравнения. Рассмотрим уравнение вида . Основной метод решения – возведение обеих частей уравнения в степень n. При этом, если n – четное, то могут возникнуть ...
... по способам решения иррациональных неравенств вида , рассмотрена подробно, изложение теории строгое. Только в учебнике Виленкина рассматривается решение иррационального неравенства вида . Наиболее большой объем упражнений для решения иррациональных уравнений и неравенств представлен в учебниках [11] и [5]. В учебнике [4] упражнений не много, но они разнообразны. Основные понятия, относящиеся к ...
... литературы дается характеристика этих форм, разработана методика применения самостоятельной работы вместе с иными формами организации познавательной деятельности на факультативных занятиях в выпускных классах средней школы, изучены учебные возможности учащихся в экспериментальной группе, проведена опытно- экспериментальная работа по включению самостоятельной работы школьников в процесс обучения. ...
0 комментариев