4.2. Иррациональные показательные уравнения

Пример 1. Решить уравнение .

Решение. ;  - решений нет.

О т в е т:

Пример 2. Решить уравнение

Решение.

  

- Решений нет, т.к.

О т в е т:

Пример 3. Решить уравнение

Решение.

;

О т в е т: .

Приме 4. Решить уравнение

Решение.

;

Введем новую переменную. Пусть . Получаем, что . Тогда

Выполним обратную замену.  Или

; 

- решений нет.

;.

О т в е т:{3}.

Пример 5. Решить уравнение

Решение. Множество М – общая часть (пересечение) областей существования функций - есть все

На множестве М функции  и  положительны. Поэтому, логарифмируя обе части уравнения, получим уравнение, равносильное исходному на М.

Решим уравнения совокупности.

. Введем новую переменную. Пусть . Получаем, что . Тогда . Выполним обратную замену.  или . Тогда  или .

Получаем, что исходное уравнение равносильно системе:

О т в е т: .

Замечание. В задачах повышенной сложности встречаются уравнения вида , где - некоторые положительные числа. Такие уравнения не являются иррациональными уравнениями, т.к. не содержат переменной под знаком радикала, но все, же разберем их решение в данном пункте.

Пример 6. Решить уравнение

Решение. Преобразуем выражение

Тогда исходное уравнение примет вид:

Замечание. Можно заметить, что , следовательно,  и - взаимно обратные числа. Тогда . Введем новую переменную. Пусть , а Получаем, что исходное уравнение равносильно следующему . Тогда

Выполним обратную замену.

 или

; ;

Тогда .

;

Тогда

О т в е т :{-2;2}.

4.3 Иррациональные логарифмические уравнения

Пример 1. Решить уравнения

Решение. ;

Учитывая, что , данное уравнение равносильно системе:

О т в е т:{32,75}.

Пример 2. Решить уравнения

Решение. . Преобразуем правую часть уравнения.

Вернемся к исходному уравнению.

;

Введем новую переменную. Пусть . Получаем, что

.

Решим уравнение системы.

; .

Тогда

Вернемся к системе: Следовательно,

Выполним обратную замену:

Проверка показывает, что 1 является корнем исходного уравнения.

О т в е т: {1}.

Пример 3. решить уравнение

Решение. Найдем ОДЗ переменной х.

ОДЗ:

.

На ОДЗ исходное уравнение равносильно уравнению

; ;

Введем новую переменную. Пусть  или

;

;

О т в е т: {3;81}.


Заключение

Данная курсовая работа помогла мне научиться решать иррациональные уравнения следующих типов: стандартные, нестандартные, показательные, логарифмические, повышенного уровня. Применять основные свойства функции, область определения, область значения функции. Использовать наибольшее и наименьшее значения функции. Применение производной. Я считаю, что цели которые поставлены перед выполнением курсовой работы выполнены.


Литература

О.В. Харькова «Иррациональные уравнения».

А.Н. Колмогоров «Алгебра и начала анализа».

Е.Д. Куланин, В.П. Норин «3000 конкурсных задач по математике».

В.А. Гусев, А.Г. Мордкович «Справочные материалы по математике».

М.И. Сканави «Сборник задач по математике».


Информация о работе «Иррациональные уравнения»
Раздел: Математика
Количество знаков с пробелами: 36308
Количество таблиц: 0
Количество изображений: 4

Похожие работы

Скачать
10420
0
0

... введение нового(новых) неизвестного. Пример 2.   Обозначим , тогда а) Уравнение примет вид: Корень  не удовлетворяет условию   Ответ: 76. Методы решения иррациональных уравнений. Методы решения иррациональных уравнений, как правило основаны на возможности замены (с помощью некоторых преобразований) иррационального уравнения рациональным уравнением, которое либо равносильно исходному, либо ...

Скачать
3400
0
1

... , т.к. . б) , т.к. . в) . Выясним, при каких n выражения под знаком модуля меняют знак: n=-1, n=1, n=0. 1) Если n<-1, то 2) Если -1£n<0, то 3) Если 0<n<1, то 4) Если n³1, то Ответ: II. Иррациональные уравнения. Рассмотрим уравнение вида . Основной метод решения – возведение обеих частей уравнения в степень n. При этом, если n – четное, то могут возникнуть ...

Скачать
53347
0
1

... по способам решения иррациональных неравенств вида ,  рассмотрена подробно, изложение теории строгое. Только в учебнике Виленкина рассматривается решение иррационального неравенства вида . Наиболее большой объем упражнений для решения иррациональных уравнений и неравенств представлен в учебниках [11] и [5]. В учебнике [4] упражнений не много, но они разнообразны. Основные понятия, относящиеся к ...

Скачать
107387
6
244

... литературы дается характеристика этих форм, разработана методика применения самостоятельной работы вместе с иными формами организации познавательной деятельности на факультативных занятиях в выпускных классах средней школы, изучены учебные возможности учащихся в экспериментальной группе, проведена опытно- экспериментальная работа по включению самостоятельной работы школьников в процесс обучения. ...

0 комментариев


Наверх