1.3 Уравнения в Индии

 

Квадратные уравнения решали и в Индии. Задачи на квадратные уравнения встречаются уже в астрономическом трактате «Ариабхаттиам», составленном в 499 году индийским математиком и астрономом Ариабхаттой. Другой индийский ученый, Брахмагупта (VII век), изложил общее правило решения квадратных уравнений, приведенных к единой конической форме:

aх² + bx = c, где a > 0

В этом уравнении коэффициенты, кроме а, могут быть и отрицательными. Правило Брахмагупты по существу совпадает с нашим.

В Древней Индии были распространены публичные соревнования в решении трудных задач. В одной из старинных индийских книг говорится по поводу таких соревнований следующее: «Как солнце блеском своим затмевает звезды, так ученый человек затмит славу другого в народных собраниях, предлагая и решая алгебраические задачи ». Задачи часто облекались в стихотворную форму.

Различные уравнения как квадратные, так и уравнения высших степеней решались нашими далекими предками. Эти уравнения решали в самых разных и отдаленных друг от друга странах. Потребность в уравнениях была велика. Уравнения применялись в строительстве, в военных делах, и в бытовых ситуациях.


Глава 2. Квадратные уравнения и уравнения высших порядков

 

2.1 Основные понятия

Квадратным уравнением называют уравнения вида

ax²+bx+c = 0,

где коэффициенты a, b, c – любые действительные числа, причём a ≠ 0.

Квадратное уравнение называют приведённым, если его старший коэффициент равен 1.

Пример:

x2 + 2x + 6 = 0.

Квадратное уравнение называют не приведенным, если старший коэффициент отличен от 1.

Пример:

2x2 + 8x + 3 = 0.

Полное квадратное уравнение - квадратное уравнение, в котором присутствуют все три слагаемых, иными словами, это уравнение, у которого коэффициенты b и c отличны от нуля.

Пример:

3x2 + 4x + 2 = 0.

Неполное квадратное уравнение – это квадратное уравнение, у которого хотя бы один коэффициент b, c равен нулю.

Таким образом, выделяют три вида неполных квадратных уравнений:

1)         ax² = 0 (имеет два совпадающих корня x = 0).

2)         ax² + bx = 0 (имеет два корня x1 = 0 и x2 = -)

 

Пример:

x2 + 5x = 0

x(x+5) =0

x1= 0, x2 = -5.

 

Ответ: x1=0, x2= -5.

3)         ax² + c = 0

Если –<0 - уравнение не имеет корней.

Пример:

5x2 + 6 = 0

 

Ответ: уравнение не имеет корней.

Если –> 0, то x1,2 = ±

 

Пример:

2x2 – 6 = 0


х2

х1,2

 

Ответ: х1,2

Любое квадратное уравнение можно решить через дискриминант (b² - 4ac). Обычно выражение b² - 4ac обозначают буквой D и называют дискриминантом квадратного уравнение ax² +bx + c = 0 (или дискриминантом квадратного трёх члена ax² + bx + c)

Пример:

х2 +14x – 23 = 0

D = b2 – 4ac = 144 + 92 = 256

x1,2 =

x1 =

x2 =

 

Ответ: x1 = 1, x2 = - 15.

В зависимости от дискриминанта уравнение может иметь или не иметь решение.

1) Если D < 0, то не имеет решения.

2) Если D = 0, то уравнение имеет два совпадающих решения x1,2 =

3) Если D > 0, то имеет два решения, находящиеся по формуле:

x1,2 =


2.2 Формулы четного коэффициента при х

 

Мы привыкли к тому, что корни квадратного уравнения

ax² + bx + c = 0 находятся по формуле

x1,2 =

Но математики никогда не пройдут мимо возможности облегчить себе вычисления. Они обнаружили, что эту формулу можно упростить в случае, когда коэффициент b имеет вид b = 2k, в частности, если b есть четное число.

В самом деле, пусть у квадратного уравнения ax² + bx + c = 0 коэффициент b имеет вид b = 2k. Подставив в нашу формулу число 2k вместо b, получим:

x1,2=

=

Итак, корни квадратного уравнения ax² + 2kx + c = 0 можно вычислять по формуле:

x1,2=

 

Пример:

2 - 2х + 1 = 0


x1,2=

Преимущество этой формулы в том, что в квадрат возводится не число b, а его половина, вычитается из этого квадрата не 4ac, а просто ac и, наконец, в том, что в знаменателе содержится не 2a, а просто a.

В случае если квадратное уравнение приведенное, то наша формула будет выглядеть так:

x1,2=-k ±.

Пример:

х2 – 4х + 3 = 0

х1,2 = 2 ±

х1 = 3

х2 = 1

 

Ответ: х1 = 3, х2 = 1.

 

2.3 Теорема Виета

 

Очень любопытное свойство корней квадратного уравнения обнаружил французский математик Франсуа Виет. Это свойство назвали теорема Виета: Чтобы числа x1 и x2 являлись корнями уравнения: ax² + bx + c = 0

необходимо и достаточно выполнения равенства


x1 + x2 = -b/a и x1x2 = c/a

Теорема Виета позволяет судить о знаках и абсолютной величине квадратного уравнения

А именно

x² + bx + c = 0

1.    Если b>0, c>0 то оба корня отрицательны.

2.    Если b<0, c>0 то оба корня положительны.

3.    Если b>0, c<0 то уравнение имеет корни разных знаков, причём отрицательный корень по абсолютной величине больше положительного.

4.    Если b<0, c<0 то уравнение имеет корни разных знаков, причём отрицательный корень по абсолютной величине меньше положительного.

2.4 Квадратные уравнения частного характера

1) Если a + b + c = 0 в уравнении ax² + bx + c = 0, то

х1=1, а х2 = .

 

Доказательство:

В уравнении ax² + bx + c = 0, его корни

x1,2 =  (1).

Представим b из равенства a + b + c = 0

Подставим это выражение в формулу (1):


х1,2=

=

Если рассмотрим по отдельности два корня уравнения, получим:

1)         х1=

2)         х2=

Отсюда следует: х1=1, а х2 = .

1. Пример:

2х² - 3х + 1 = 0

a = 2, b = -3, c = 1.

a + b + c = 0, следовательно

х1 = 1

х2 = ½

2. Пример:

418х² - 1254х + 836 = 0

Этот пример очень тяжело решить через дискриминант, но, зная выше приведенную формулу его с легкостью можно решить.

a = 418, b = -1254, c = 836.

х1 = 1 х2 = 2


2) Если a - b + c = 0, в уравнении ax² + bx + c = 0, то:

х1=-1, а х2 =- .

 

Доказательство:

Рассмотрим уравнение ax² + bx + c = 0, из него следует, что:

x1,2 = (2).

Представим b из равенства a - b + c = 0

b = a + c, подставим в формулу (2):

x1,2=

=

Получаем два выражения:

1)         х1=

2)         х2=

Эта формула похожа на предыдущую, но она тоже важна, т.к. часто встречаются примеры такого типа.

1) Пример:

2х² + 3х + 1 = 0

a = 2, b = 3, c = 1.


a - b + c = 0, следовательно

х1 = -1

х2 = -1/2

2) Пример:

 

Ответ: x1 = -1; х2 = -

3) Метод “переброски”

Корни квадратных уравнений y² + by + аc = 0 и ax² + bx + c = 0 связанны соотношениями:

х1 = и х2 =

 

Доказательство:

а) Рассмотрим уравнение ax² + bx + c = 0

x1,2 = =  

б) Рассмотрим уравнение y² + by + аc = 0

y1,2 =


Заметим, что дискриминанты у обоих решений равны, сравним корни этих двух уравнений. Они отличаются друг от друга на старший коэффициент, корни первого уравнения меньше корней второго на а. Используя теорему Виета и выше приведенное правило, нетрудно решать разнообразные уравнения.

Пример:

Имеем произвольное квадратное уравнение

10х² - 11х + 3 = 0

Преобразуем это уравнение по приведенному правилу

y² - 11y + 30 = 0

Получим приведенное квадратное уравнение, которое можно достаточно легко решить с помощью теоремы Виета.

Пусть y1 и y2 корни уравнения y² - 11y + 30 = 0

y1y2 = 30 y1 = 6

y1 + y2 = 11 y2 = 5

Зная, что корни этих уравнений отличны друг от друга на а, то

х1 = 6/10 = 0,6

х2 = 5/10 = 0,5

В некоторых случаях удобно решать сначала не данное уравнение ax² + bx + c = 0, а приведенное y² + by + аc = 0, которое получается из данного «переброской» коэффициента а, а затем разделить найденный корни на а для нахождения исходного уравнения.



Информация о работе «Квадратные уравнения и уравнения высших порядков»
Раздел: Математика
Количество знаков с пробелами: 20927
Количество таблиц: 3
Количество изображений: 0

Похожие работы

Скачать
149274
13
5

... f ¢(xо) = 0, >0 (<0), то точка xоявляется точкой локального минимума (максимума) функции f(x). Если же =0, то нужно либо пользоваться первым достаточным условием, либо привлекать высшие производные. На отрезке [a,b] функция y = f(x) может достигать наименьшего или наибольшего значения либо в критических точках, либо на концах отрезка [a,b]. Пример 3.22. Найти экстремумы функции f(x) ...

Скачать
87023
7
1

... список или выбрать из 2-3 текстов наиболее интересные места. Таким образом, мы рассмотрели общие положения по созданию и проведению элективных курсов, которые будут учтены при разработке элективного курса по алгебре для 9 класса «Квадратные уравнения и неравенства с параметром». Глава II. Методика проведения элективного курса «Квадратные уравнения и неравенства с параметром»   1.1. Общие ...

Скачать
43593
0
0

... решения от численных методов расчёта. Для определения корней уравнения не требуется знания теорий групп Абеля, Галуа, Ли и пр. и применения специальной математической терминологии: колец, полей, идеалов, изоморфизмов и т.д. Для решения алгебраического уравнения n - ой степени нужно только умение решать квадратные уравнения и извлекать корни из комплексного числа. Корни могут быть определены с ...

Скачать
53746
0
28

... с единицами измерений физических величин в системе MathCAD? 11.    Подробно охарактеризуйте текстовые, графические и математические блоки. Лекция №2. Задачи линейной алгебры и решение дифференциальных уравнений в среде MathCAD В задачах линейной алгебры практически всегда возникает необходимость выполнять различные операции с матрицами. Панель операторов с матрицами находится на панели Math. ...

0 комментариев


Наверх