1.3 Уравнения в Индии
Квадратные уравнения решали и в Индии. Задачи на квадратные уравнения встречаются уже в астрономическом трактате «Ариабхаттиам», составленном в 499 году индийским математиком и астрономом Ариабхаттой. Другой индийский ученый, Брахмагупта (VII век), изложил общее правило решения квадратных уравнений, приведенных к единой конической форме:
aх² + bx = c, где a > 0
В этом уравнении коэффициенты, кроме а, могут быть и отрицательными. Правило Брахмагупты по существу совпадает с нашим.
В Древней Индии были распространены публичные соревнования в решении трудных задач. В одной из старинных индийских книг говорится по поводу таких соревнований следующее: «Как солнце блеском своим затмевает звезды, так ученый человек затмит славу другого в народных собраниях, предлагая и решая алгебраические задачи ». Задачи часто облекались в стихотворную форму.
Различные уравнения как квадратные, так и уравнения высших степеней решались нашими далекими предками. Эти уравнения решали в самых разных и отдаленных друг от друга странах. Потребность в уравнениях была велика. Уравнения применялись в строительстве, в военных делах, и в бытовых ситуациях.
Глава 2. Квадратные уравнения и уравнения высших порядков
2.1 Основные понятия
Квадратным уравнением называют уравнения вида
ax²+bx+c = 0,
где коэффициенты a, b, c – любые действительные числа, причём a ≠ 0.
Квадратное уравнение называют приведённым, если его старший коэффициент равен 1.
Пример:
x2 + 2x + 6 = 0.
Квадратное уравнение называют не приведенным, если старший коэффициент отличен от 1.
Пример:
2x2 + 8x + 3 = 0.
Полное квадратное уравнение - квадратное уравнение, в котором присутствуют все три слагаемых, иными словами, это уравнение, у которого коэффициенты b и c отличны от нуля.
Пример:
3x2 + 4x + 2 = 0.
Неполное квадратное уравнение – это квадратное уравнение, у которого хотя бы один коэффициент b, c равен нулю.
Таким образом, выделяют три вида неполных квадратных уравнений:
1) ax² = 0 (имеет два совпадающих корня x = 0).
2) ax² + bx = 0 (имеет два корня x1 = 0 и x2 = -)
Пример:
x2 + 5x = 0
x(x+5) =0
x1= 0, x2 = -5.
Ответ: x1=0, x2= -5.
3) ax² + c = 0
Если –<0 - уравнение не имеет корней.
Пример:
5x2 + 6 = 0
Ответ: уравнение не имеет корней.
Если –> 0, то x1,2 = ±
Пример:
2x2 – 6 = 0
х2=±
х1,2=±
Ответ: х1,2=±
Любое квадратное уравнение можно решить через дискриминант (b² - 4ac). Обычно выражение b² - 4ac обозначают буквой D и называют дискриминантом квадратного уравнение ax² +bx + c = 0 (или дискриминантом квадратного трёх члена ax² + bx + c)
Пример:
х2 +14x – 23 = 0
D = b2 – 4ac = 144 + 92 = 256
x1,2 =
x1 =
x2 =
Ответ: x1 = 1, x2 = - 15.
В зависимости от дискриминанта уравнение может иметь или не иметь решение.
1) Если D < 0, то не имеет решения.
2) Если D = 0, то уравнение имеет два совпадающих решения x1,2 =
3) Если D > 0, то имеет два решения, находящиеся по формуле:
x1,2 =
2.2 Формулы четного коэффициента при х
Мы привыкли к тому, что корни квадратного уравнения
ax² + bx + c = 0 находятся по формуле
x1,2 =
Но математики никогда не пройдут мимо возможности облегчить себе вычисления. Они обнаружили, что эту формулу можно упростить в случае, когда коэффициент b имеет вид b = 2k, в частности, если b есть четное число.
В самом деле, пусть у квадратного уравнения ax² + bx + c = 0 коэффициент b имеет вид b = 2k. Подставив в нашу формулу число 2k вместо b, получим:
x1,2=
=
Итак, корни квадратного уравнения ax² + 2kx + c = 0 можно вычислять по формуле:
x1,2=
Пример:
5х2 - 2х + 1 = 0
x1,2=
Преимущество этой формулы в том, что в квадрат возводится не число b, а его половина, вычитается из этого квадрата не 4ac, а просто ac и, наконец, в том, что в знаменателе содержится не 2a, а просто a.
В случае если квадратное уравнение приведенное, то наша формула будет выглядеть так:
x1,2=-k ±.
Пример:
х2 – 4х + 3 = 0
х1,2 = 2 ±
х1 = 3
х2 = 1
Ответ: х1 = 3, х2 = 1.
2.3 Теорема Виета
Очень любопытное свойство корней квадратного уравнения обнаружил французский математик Франсуа Виет. Это свойство назвали теорема Виета: Чтобы числа x1 и x2 являлись корнями уравнения: ax² + bx + c = 0
необходимо и достаточно выполнения равенства
x1 + x2 = -b/a и x1x2 = c/a
Теорема Виета позволяет судить о знаках и абсолютной величине квадратного уравнения
А именно
x² + bx + c = 0
1. Если b>0, c>0 то оба корня отрицательны.
2. Если b<0, c>0 то оба корня положительны.
3. Если b>0, c<0 то уравнение имеет корни разных знаков, причём отрицательный корень по абсолютной величине больше положительного.
4. Если b<0, c<0 то уравнение имеет корни разных знаков, причём отрицательный корень по абсолютной величине меньше положительного.
2.4 Квадратные уравнения частного характера
1) Если a + b + c = 0 в уравнении ax² + bx + c = 0, то
х1=1, а х2 = .
Доказательство:
В уравнении ax² + bx + c = 0, его корни
x1,2 = (1).
Представим b из равенства a + b + c = 0
Подставим это выражение в формулу (1):
х1,2=
=
Если рассмотрим по отдельности два корня уравнения, получим:
1) х1=
2) х2=
Отсюда следует: х1=1, а х2 = .
1. Пример:
2х² - 3х + 1 = 0
a = 2, b = -3, c = 1.
a + b + c = 0, следовательно
х1 = 1
х2 = ½
2. Пример:
418х² - 1254х + 836 = 0
Этот пример очень тяжело решить через дискриминант, но, зная выше приведенную формулу его с легкостью можно решить.
a = 418, b = -1254, c = 836.
х1 = 1 х2 = 2
2) Если a - b + c = 0, в уравнении ax² + bx + c = 0, то:
х1=-1, а х2 =- .
Доказательство:
Рассмотрим уравнение ax² + bx + c = 0, из него следует, что:
x1,2 = (2).
Представим b из равенства a - b + c = 0
b = a + c, подставим в формулу (2):
x1,2=
=
Получаем два выражения:
1) х1=
2) х2=
Эта формула похожа на предыдущую, но она тоже важна, т.к. часто встречаются примеры такого типа.
1) Пример:
2х² + 3х + 1 = 0
a = 2, b = 3, c = 1.
a - b + c = 0, следовательно
х1 = -1
х2 = -1/2
2) Пример:
Ответ: x1 = -1; х2 = -
3) Метод “переброски”
Корни квадратных уравнений y² + by + аc = 0 и ax² + bx + c = 0 связанны соотношениями:
х1 = и х2 =
Доказательство:
а) Рассмотрим уравнение ax² + bx + c = 0
x1,2 = =
б) Рассмотрим уравнение y² + by + аc = 0
y1,2 =
Заметим, что дискриминанты у обоих решений равны, сравним корни этих двух уравнений. Они отличаются друг от друга на старший коэффициент, корни первого уравнения меньше корней второго на а. Используя теорему Виета и выше приведенное правило, нетрудно решать разнообразные уравнения.
Пример:
Имеем произвольное квадратное уравнение
10х² - 11х + 3 = 0
Преобразуем это уравнение по приведенному правилу
y² - 11y + 30 = 0
Получим приведенное квадратное уравнение, которое можно достаточно легко решить с помощью теоремы Виета.
Пусть y1 и y2 корни уравнения y² - 11y + 30 = 0
y1y2 = 30 y1 = 6
y1 + y2 = 11 y2 = 5
Зная, что корни этих уравнений отличны друг от друга на а, то
х1 = 6/10 = 0,6
х2 = 5/10 = 0,5
В некоторых случаях удобно решать сначала не данное уравнение ax² + bx + c = 0, а приведенное y² + by + аc = 0, которое получается из данного «переброской» коэффициента а, а затем разделить найденный корни на а для нахождения исходного уравнения.
... f ¢(xо) = 0, >0 (<0), то точка xоявляется точкой локального минимума (максимума) функции f(x). Если же =0, то нужно либо пользоваться первым достаточным условием, либо привлекать высшие производные. На отрезке [a,b] функция y = f(x) может достигать наименьшего или наибольшего значения либо в критических точках, либо на концах отрезка [a,b]. Пример 3.22. Найти экстремумы функции f(x) ...
... список или выбрать из 2-3 текстов наиболее интересные места. Таким образом, мы рассмотрели общие положения по созданию и проведению элективных курсов, которые будут учтены при разработке элективного курса по алгебре для 9 класса «Квадратные уравнения и неравенства с параметром». Глава II. Методика проведения элективного курса «Квадратные уравнения и неравенства с параметром» 1.1. Общие ...
... решения от численных методов расчёта. Для определения корней уравнения не требуется знания теорий групп Абеля, Галуа, Ли и пр. и применения специальной математической терминологии: колец, полей, идеалов, изоморфизмов и т.д. Для решения алгебраического уравнения n - ой степени нужно только умение решать квадратные уравнения и извлекать корни из комплексного числа. Корни могут быть определены с ...
... с единицами измерений физических величин в системе MathCAD? 11. Подробно охарактеризуйте текстовые, графические и математические блоки. Лекция №2. Задачи линейной алгебры и решение дифференциальных уравнений в среде MathCAD В задачах линейной алгебры практически всегда возникает необходимость выполнять различные операции с матрицами. Панель операторов с матрицами находится на панели Math. ...
0 комментариев