Аналіз і синтез досліджуваної системи управління сервоприводу з урахуванням впливу нелінійних ділянок

111400
знаков
14
таблиц
24
изображения

2. Аналіз і синтез досліджуваної системи управління сервоприводу з урахуванням впливу нелінійних ділянок

2.1 Аналіз технічного завдання на систему управління

В технічному завданні (ТЗ) систематизовані:

—   постановка задач проектування систем управління;

—   початкові дані (первинні характеристики) для об'єкту управління і його початкова математична модель;

—   опис вигляду для проектує мої системи управління;

—   умови експлуатації устаткування системи управління (СУ);

—   вимоги до якості управління;

—   характеристики енергоживлення устаткування.

ТЗ є основним документом в процесі проектування системи, містить всі початкові дані і вимоги до проектованої системи. Відповідно до пунктів 4.1–4.2 ТЗ формується вербальна модель об'єкту управління (ОУ) сервоприводу, виконана по нормальній гідродинамічній схемі з гідродинамічними органами управління, що є площинами, що відхиляються. На малюнку 2.1 представлена принципова схема типової електрогідравлічної рульової машинки [7], що є гідравлічним підсилювачем золотникового типу, керованим пропорційним електромагнітним елементом 7.

Основними елементами гідропідсилювача є: два золотники 4 і 5, робочий циліндр 17 з поршнем 18, кривошипно-шатунний механізм 14,15. Вихідний вал кривошипно-шатунного механізму 13 кінематично пов'язаний з управляючим органом літального апарату.

Робочий тиск в порожнинах циліндра створюється шестерним насосом 1, електродвигуном 10, що приводиться в рух. Пропорційний електромагнітний елемент 7 має якір. 8. Якір електромагніту кінематично пов'язаний із золотником за допомогою коромисла 3, сполученого з корпусом через плоску пружину 2 і тягу 5, Конструктивно електрогідравлічна РМ виконана у вигляді литого корпусу, що служить одночасно резервуаром з робочою рідиною (маслом), в якому розташовані практично всі перераховані елементи.

Автономність РМ забезпечується за рахунок вбудованого в корпус спеціального шестерного гідронасоса 1 для створення тиску робочої рідини в каналах гідросистеми.

Задані в ТЗ умови експлуатації устаткування СУ – це набір параметрів для проектування або вибору вимірювальних, обчислювальних засобів і виконавчих пристроїв, розміщуваних на електрогідравлічному приводі. Відповідно до приведених в ТЗ вимог до якості процесу управління можливо однозначно визначити структуру і параметри законів управління контурів системи, що забезпечують стійкість і якість процесів, а також виконати аналіз впливу відхилення параметрів об'єкту і регулятора на вказані показники по заданих запасах стійкості.

Вказані в ТЗ вигляд рухи дозволяють одержати уявлення про опорну траєкторію ОУ, що використовується в процесі формування лінійною моделлю, а також служать основою для вивчення робочої моделі ОУ у вигляді системи лінійних диференціальних рівнянь, передавальних функцій [15].

2.2 Математична модель об'єкту управління

2.2.1 Підсилювач сервоприводу

Підсилювач сервоприводу (ПСП) – це підсилювач потужності. На вхід підсилювача подаються струми порядка мікроампера, а на виході одержують до десятків або сотень міліамперів, а іноді навіть дещо ампер.

ПСП є достатньо малоінерційною ланкою. В самих «жорстких» випадках його передавальна функція приймає вигляд:


(2.1)

Частіше за все має малу величину. Передавальну функцію ПСП приблизно можна записати як:

. (2.2)

Де  – коефіцієнт посилення підсилювача по потужності.

2.2.2 Рульова машинка

Рульова машинка (РМ) – перетворить енергію, що поступає з ПСП, в механічне переміщення. Особливістю РМ є те, що вона представляє собою інтегруючу ланку, тобто при подачі на вхід сигналу, на виході одержуємо швидкість переміщення (кутову швидкість).

Рульова машина в системах управління літального апарату (СУЛА) самостійно звичайно не застосовується, а входить до складу замкнутого контуру сервоприводу і своїми динамічними і статичними параметрами визначає якість роботи сервоприводу.

Для повороту рульового органу рульова машина приводу повинна розвинути момент, більший моменту, що навантажує вихідний вал РМ. До таких моментів можна віднести:

М інерц. – інерційний;

М демпф – демпфуючий;

М шарн. – шарнірний;

М а1 – момент асиметрії, визначуваний неспівпаданням ліній дії сили тяги rδ і осі підвісу;

М а2 – момент асиметрії, визначуваний неспівпаданням сили інерції з віссю підвісу;

М тер – момент від сил сухого тертя.

Таким чином, рушійний момент (МРУШ) врівноважується моментами навантажень:

(2.3)

Зважаючи на складність пристрою машини математичне представлення динамічних процесів в ній достатньо складне. Тому представимо РМ у вигляді двох роздільних динамічних ланок: електромеханічного перетворювача (ЕП) і гідропідсилювача (ГП) в кожному з яких є свій рухомий елемент (якір і поршень).

Тоді передавальна функція РМ може бути представлена у вигляді передавальних функцій двох послідовно сполучених ланок:

(2.4)

Передавальну функцію  електромеханічного перетворювача можна одержати з рівнянні руху якоря:

(2.5)

Рівняння (2.5) в стандартній операторній формі матиме вигляд:

(2.6)

де

IЯ – приведений момент інерції якоря;

B – коефіцієнт електромагнітного демпфування і демпфуючих властивостей середовища, в якому переміщається якір;

С – жорсткість пружного елемента якоря;

IУ – управляючий струм якоря (вхідна дія);

αЯ – кут повороту якоря (вихідний параметр ланки);

K – коефіцієнт пропорційності, що характеризує залежність між струмом управління і електромагнітним моментом, що розвивається.

З рівняння (2.6) можна одержати передавальну функцію для електромеханічного перетворювача (ЕП):

(2.7)

де – статичний коефіцієнт передачі ЕП;

ТЯ – постійна часу, рівна ;

ξ – ступінь заспокоєння якоря, рівна .

Для отримання рівняння динаміки гідропідсилювача (ГП) і його передавальної функції можна скористатися рівнянням Бернулі, що встановлює зв'язок між переміщенням золотників і зусиллям тиску рідини, що розвивається, на поршень, і записати рівняння руху поршня залежно від переміщення золотника (якоря, який механічно пов'язаний із золотниками):

 (2.8)

де

m – маса поршня;

у – координата переміщення поршня (вихідна величина);

αЯ – кутове переміщення якоря ЕП (вхідна величина);

k1 – приведений коефіцієнт демпфування;

k2 – приведений коефіцієнт пружності, що враховує зусилля від шарнірного моменту;

k3 – коефіцієнт пропорційності між кутовим переміщенням якоря і зусиллям, створюваним різницею тиску на торцях силового поршня.

Позначивши в рівнянні (2.8) через  передавальне число від поршня до вихідного валу рульової машини, а через δ – кут повороту вихідного валу, одержимо:

(2.9)

З рівняння (2.9) можна одержати передавальну функцію підсилювача сервоприводу:

 (2.10)

де

 – статичний коефіцієнт передачі підсилювача сервоприводу;

TПСП – постійна часу ПСП, рівна ;

ξ – ступінь загасання, рівна  або .

Враховуючи високу вихідну потужність, що розвивається на валу РМ, відсутність шарнірного моменту в ненавантаженому стані РМ і крихту власних пружних властивостей в конструкції підсилювача сервоприводу, його передавальну функцію можна представити у вигляді:


 (2.11)

де

 – коефіцієнт посилення підсилювача по потужності;

ТП – постійна часу ПСП.

Об'єднуючи передавальну функцію двох ланок WЕП(s) і WПСП(s), згідно (2.7) і (2.11), одержимо передавальну функцію РМ.

Залежно від коренів виразу, дана передавальна функція може бути коливальною ланкою або ж надається як дві інерційні ланки.

Більш коректним (точним) для передавальної функції РМ є вираз:

. (2.12)

При обліку коливання пального в баках, корпусу ракети і т.д., необхідно враховувати і більш високоякісні члени передавальної функції. В цьому випадку РМ може описуватися диференціальними рівняннями 14–15 порядку. Постійні часу, ,,,, залежить від їх природи.

Управляючий вузол (УВ) – є пропорційний електромеханічний перетворювач, звичайне могутнє поляризоване реле. Зусилля якоря поляризованого реле достатні для переміщення золотників в гідросистемі РМ. Силовий вузол (СВ) – звичайно складається з робочого (силового) циліндра з поршнем, що приводиться в рух гідрожидкістю, поступаючої під тиском від вузла живлення (ВЖ).

Основними вимогами, що пред'являються до рульової машинки, є: досягнення якнайменшої кількості коливальних ланок, досягнення якнайменшого значення постійних часу і вибір власної частоти. Власна частота РМ не повинна співпадати з частотою інших ланок виробу.



Информация о работе «Дослідження сервоприводу з урахуванням нелінійності»
Раздел: Промышленность, производство
Количество знаков с пробелами: 111400
Количество таблиц: 14
Количество изображений: 24

0 комментариев


Наверх