1.3 Нервно-мышечный аппарат
Скелетные (поперечнополосатые) мышцы – это «машины», преобразующие химическую энергию непосредственно в механическую и тепловую. Основным морфофункциональным элементом нервно-мышечного аппарата является двигательная единица (ДЕ). ДЕ – это мотонейрон с иннервируемыми или мышечными волокнами [25].
В структуре мышечной ткани различают два типа МВ – медленносокращающиеся МВ и быстросокращающиеся МВ.
ММВ – обладают следующими свойствами: небольшой скоростью сокращения, большим количеством митохондрий, высокой активностью оксидативных энзимов, широкой васкуляризацией, высоким потенциалом накопления гликогена [18].
ММВ – малоутомляемы. Они обладают хорошо развитой капиллярной сетью. На одно мышечное волокно в среднем приходиться 4-6 капилляров. Благодаря этому во время сокращения они обеспечиваются достаточным количеством кислорода. В их цитоплазме имеется большое количество митохондрий и наблюдается высокая активность окислительных ферментов. Все это определяет их существенную аэробную выносливость и позволяет выполнять работу умеренной мощности длительное время без утомления [25].
БМВ – наоборот, характеризуются относительно низкой аэробной выносливостью. Они более приспособлены к анаэробной работе (без кислорода), чем ММВ. Это означает, что их АТФ образуется не путем окисления, анаэробным реакциям [8].
Из всех типов ДЕ мотонейроны БМВ – наиболее крупные, имеют толстый аксон, разветвляющийся на большое число концевых веточек и иннервирующий соответственно большую группу мышечных волокон. Эти мотонейроны не способны в течение длительного времени поддерживать устойчивую частоту разрядов, то есть быстро утомляются. Более всего они приспособлены для выполнения кратковременной, но мощной работы [25]. При этом необходимо отметить, что сила, производимая отдельными ММВ и БМВ по величине отличается незначительно. Различия в величине производимой силы между ММВ и БМВ обусловлено количеством МВ в ДЕ, а не величиной силы, производимой каждым волокном [8].
Соотношение мышечных волокон разных типов детерминировано генетически. Вероятно, структура МВ, соотношение волокон различного типа заложены на уровне ДНК и в значительной мере определяются особенностями нейромышечной регуляции, о чем вполне убедительно свидетельствуют исследования, в которых изучалось влияния на изменения типа МВ перекрестной иннервации. Таким образом, генетически заданный тип иннервации обеспечивает формирование фенотипа мышечной ткани, которая лишь в относительно узких границах может быть модифицирована напряженной тренировкой, не более 5% [26]. Однако результаты отдельных исследований позволяют говорить о том, что определенная часть БМВ заложена в человеке, однако подавлена в процессе генотипической и фенотипической адаптации [18]. Содержание ММВ и БМВ во всех мышцах тела не одинаково. Как правило, в мышцах рук и ног человека сходный состав волокон. Исследования показывают, что у людей с преобладанием ММВ в мышцах ног, как правило, большее количество этих же волокон и в мышцах рук. Камбаловидная мышца, находящаяся глубже икроножной, у всех людей почти полностью состоит из ММВ [6]
1.4 Биохимия клетки. Энергетика разных типов МВ.
Процессы мышечного сокращения, передачи нервного импульса, синтеза белка идут с затратами энергии. В клетках энергия используется только в виде АТФ. Освобождение энергии, заключенной в АТФ, осуществляется благодаря ферменту АТФ-азе, который имеется во всех местах клетки, где требуется энергия. По мере освобождения энергии образуется молекулы АДФ, фосфора (Ф), ионы водорода (Н)
АТФ = АДФ+Ф+Н+Энергия
Ресинтез АТФ осуществляется в основном за счет запасов КРФ. Когда КрФ отдает свою энергию для ресинтеза АТФ, то образуется Кр и Ф.
КрФ = Кр+Ф+Энергия
Существуют два основных пути для образования АТФ: анаэробный и аэробный [2].
Анаэробный путь или анаэробный гликолиз связан с ферментативными системами, расположенными на мембране СПР и в саркоплазме. При появлении рядом с этими ферментами Кр и Ф. запускается цепь химических реакций, в ходе которых гликоген или глюкоза распадаются до пирувата с образованием молекулы АТФ. Молекулы АТФ тут же отдают свою энергию для ресинтеза КрФ, а АДФ и Ф вновь используются в гликолизе для образования новой молекулы АТФ. Пируват имеет две возможности для преобразования:
1) превратиться в Ацетил-коэнзим-А, подвергнуться в митохондриях окислительному фосфорилированию до образования углекислого газа, воды и молекулы АТФ. Это метаболический путь – гликоген – пируват – митохондрия – углекислый газ и вода – называют аэробным гликолизом.
2) с помощью фермента ЛДГ-М пируват превращается в лактат. Это метаболический путь – гликоген – пируват – лактат – называется анаэробным гликолизом и сопровождается накоплением ионов Н.
Аэробный путь, или ОФ, связан с митохондриальной системой. При появлении рядом с митохондриями Кр и Ф с помощью митохондриальной КФК-азы выполняется ресинтез КрФ за счет АТФ, образовавшейся в митохондрии. АДФ и Ф поступают обратно в митохондрию для образования новой АТФ. Для синтеза АТФ имеется два метаболических пути:
1) аэробный гликолиз;
2) окисление липидов (жиров).
Аэробные процессы связаны с поглощением ионов Н, а в ММВ (МВ сердца и диафрагмы) преобладает фермент ЛДГ-С, который более интенсивно превращает лактат в пируват. Поэтому при функционировании ММВ идет быстрое устранение лактата и ионов Н [20].
Энергообеспечение ММВ гипотетически будет осуществляться по следующей схеме: первые сек. – КрФ (20-25с.), затем – КрФ и жиры, далее – вклад КрФ и жиров будет минимизироваться параллельно с увеличением вклада углеводов, до тех пор, пока углеводы (гликоген, глюкоза) и лактат не станут практически единственными субстратами ОФ. При этом концентрация КрФ в среднем по мышце будет сохраняться на относительно постоянном уровне около 70-80% от исхода [26].
Вторая стадия работы ММВ – это стадия снижения вклада этих волокон в генерацию механического усилия, создаваемого мышцей. При придельной длительности работы до 10-15 мин. Снижение производительности этих МВ может вызваться их закислением проникающими через саркоплазму ионов Н. При более длительной работе снижение вклада волокна вызывается исчерпанием внутренних запасов углеводов. Так как использование в качестве субстрата жиров снижает скорость выработки АТФ при увеличении потребления кислорода митохондриями [27;34].
Третья стадия – быстрое снижение производительности ММВ в результате их закисления, нарушения в работе клеточных мембран гипотетически в связи с гипоксией из-за ухудшения функционального состояния системы транспорта кислорода [34].
Энергетика БМВ будет иметь четыре стадии развития:
Первая стадия – вклад БМВ в производимую механическую работу невелик, но возрастает под влиянием ЦНС в процессе снижения производительности уже вовлеченных МВ.
Вторая стадия – наблюдается максимальный вклад мышечного волокна в работу, в основном за счет КрФ.
Третья стадия – постепенное снижение вклада волокна в связи с переходом на анаэробный гликолиз.
Четвертая стадия – быстрое снижение производительности волокна в связи с высокой степенью закисления и исчерпания КрФ [34].
... culturisme, англ. physical culture — культура тела) — процесс наращивания и развития мускулатуры путем занятия физическими упражнениями с отягощениями и приема высокоэнергетического питания с повышенным содержанием белка, достаточного для гипертрофии мышечных волокон. Далее представлено развитие бодибилдинга в нашей стране и Америке. Россия Русский народ, история которого насыщена борьбой с ...
... упражнения нормализуют деятельность желудочно-кишечного тракта: желудочное и кишечное сокоотделение, активность пищеварительных ферментов, моторную активность и т.д. Регулярные занятия физической культурой, сопровождаемые потоотделением, не только совершенствуют терморегуляцию, но и обеспечивают систематический вывод из организма образовавшихся в процессе жизнедеятельности шлаковых веществ. ...
... результат контрольной группы на 50,1%. Средний балл выполнения тестов в экспериментальной группе увеличился на 0,6 балла, а в контрольной на 0,2 балла. С помощью средств ритмической гимнастики удалось существенно повысить результаты в тестах на определение ритмичности, как внутренней, так и коллективной, пластичности, ориентации в пространстве и видах равновесия. 3. В результате исследования ...
... [45]. 1.6. Контроль состояния здоровья ученика тренером при индивидуальной (персональной) тренировке При проведении индивидуальных (персональных) занятий тренеру по бодибилдингу на дополнительных занятиях по физической культуре у старшеклассников рекомендуется проводить следующие мероприятия для контроля состояния здоровья занимающегося и мониторинга эффективности тренировочного процесса: ...
0 комментариев