1.6 Система управления гидроцилиндром уборки и выпуска шасси

В дипломном проекте предлагается система управления гидроцилиндром уборки и выпуска шасси, которая отличается от применяющейся в настоящее время на самолете тем, что на гидроцилиндре уборки и выпуска шасси установлен шариковый клапан переключения, в корпусе, которого имеются два противолежащих седла для шарика с двумя отверстиями в торцах клапана (рис. 1.6).

Во время рабочего хода поршня цилиндра жидкость от насоса поступает по трубопроводу (3) в полость корпуса (5), а из него по трубопроводу (6) - в поршневую полость цилиндра (7). Из штоковой полости по трубопроводу (5) рабочая жидкость идет на слив.

При холостом ходе поршня жидкость от насоса по трубопроводу (8) поступает в штоковую полость цилиндра (7) и по трубопроводу (9) - во внутреннюю полость корпуса (5), перемещая шариковый клапан влево и преодолевая усилие пружины (1). Дойдя до упора, шарик садится на седло (2), закрывая канал (3). Часть рабочей жидкости по калиброванному отверстию (4) перетекает в трубопровод (3) и идет на слив.

При перемещении поршня жидкость из поршневой полости направляется в штоковую полость, суммируясь с жидкостью, поступающей от насоса. Поршень со штоком перемещается быстрее, чем при рабочем ходе.

Внедрение данного усовершенствования в системе уборки и выпуска шасси самолета Ту-154 позволяет уменьшить время уборки шасси, что в свою очередь, приводит к более быстрому набору высоты и экономии топлива.

1.7 Гидроаккумулятор

Основным назначением гидропневматических аккумулятором является аккумулирование гидравлической энергии в периоды пауз в потреблении ее гидравлическими агрегатами системы.

Применение гидропневматических аккумуляторов дает возможность ограничить мощность насосов средней мощностью потребителей гидравлической энергии или же обеспечить в системах с эпизодическим действием потребителей перерывы в работе насосов.

С целью повышения эффективности работы гидросистемы в дипломном проекте предлагается гидроаккумулятор, который отличается от существующего тем, что в нем седло установлено по оси штуцера и выполнено с выпуклой опорной поверхностью, плавно соприкасающейся совместно с внешней торцовой поверхностью подпружиненного запорного элемента при закрытом клапане с внутренней поверхностью корпуса. На боковой поверхности подпружиненного запорного элемента выполнены дросселирующие радиальные каналы.

Внутренняя поверхность подпружиненного запорного элемента выполнена конической.

Стабильность характеристик гидроаккумулятора и повышение эффективности его работы обеспечивается за счет полного слива жидкости, формированием направленной симметричной центральной деформации диафрагмы.

Предлагаемый аккумулятор (рис. 1.7) содержит корпус (1), упругую диафрагму (3), гидравлическую (4) и газовую (2) полости, штуцер (13) для подвода жидкости и клапан, выполненный в виде седла (8) и запорного элемента (5) со сквозным осевым каналом (11) и дросселирующими радиальными каналами (12). Запорный элемент (5) связан пружиной (14) перегородкой (6), закрепленной на штуцере (13) гайкой (7). В перегородке (6) выполнен канал (15) для прохода жидкости. Седло (8) установлено соосно штуцеру (13), закреплено на перегородке (6) и имеет выпуклую опорную поверхность (10). Внутренняя поверхность (9) запорного элемента (5) выполнена конической для создания гидродинамической составляющей силы, дополняющей упругую силу пружины (14) и направленной на удержание клапана в открытом положении.

Работает гидроаккумулятор следующим образом*, при зарядке газовой полости азотом диафрагма (3) нажимает на запорный элемент (5), который, преодолевая усилие пружины (14), спускается на седло (8), которое перекрывает канал (11) клапана. При полностью закрытом клапане опорная поверхность (10) седла (8) и поверхность запорного элемента (5) клапана плавно сопрягаются с поверхностью корпуса (1), что предохраняет диафрагму (3) от повреждения. При создании гидравлического давления большего, чем давления азота, рабочая идкость перетекает через канал (15) в перегородке (6) и открывает клапан. Жидкость через каналы (11) и (12) устремляется в полость (4), деформирует диафрагму (3). Поскольку проходное сечение канала (11) значительно больше проходного сечения всех каналов (12), основной поток жидкости проходит через осевой канал (11), вызывая направленную центральную симметричную деформацию диафрагмы (3). При расходе жидкости диафрагма (3) под давлением азота вытесняет жидкость, основной поток которой выходит через канал (11). При этом диафрагма (3) распрямляется также симметрично в обратном направлении. Когда диафрагма (3) входит в контакт с клапаном и перекрывает канал (11), незначительное количество оставшейся жидкости выходит через боковые каналы (12) и зазоры в соединения клапана с корпусом (1).


1.7.1 Расчет гидроаккумулятора

Рабочие параметры гидроаккумулятора выбираются таким образом, чтобы при минимальном конструктивном его объеме и заданном перепаде (диапазоне) рабочего давления (Рмах - Pmin) была достигнута максимальная полезная емкость аккумулятора.

При расчете объемных параметров гидроаккумулятора задаются значения минимального и максимального рабочих давлений, а также полезная емкость аккумулятора. Общий (конструктивный) объем определяется из соотношения:

 (1.6)

Где: vk - общий объем;

Vn - полезный объем жидкости, вытесненный из аккумулятора от Рмах до Pmin;

И =1 - (изотермическийзакон);

Рмах , Pmin - максимальное и минимальное давления,

Pmax = (l,25 - l,65) * Pmin = 1,5*16,5 = 25 (МПа);

Рн =0,9* Рmin = 0,9*16,5 = 15 (МПа);

По статистическим данным: Vn = 0,00035 - 0,0004 м3.

 (1.7)

Объем газовой камеры определяется по формуле:

 (1.8)

Радиус шара равен:

Радиус шарового гидроаккумулятора принимаем 0,23 м.


Информация о работе «Конструктивное усовершенствование гидравлической системы самолета Ту-154 на основе анализа эксплуатации»
Раздел: Транспорт
Количество знаков с пробелами: 75787
Количество таблиц: 6
Количество изображений: 2

Похожие работы

Скачать
82774
10
11

... расчетов Р(t) строим графики изменения вероятности безопасности работы элементов гидросистемы за время типового полета t=3ч. (Рис.1.2) 1.3 Конструктивные усовершенствования шасси самолета Ту-154 При разработке конструктивных усовершенствований использовались: опыт эксплуатации шасси Ту-154, изучение технической литературы, информационный и патентный поиск. В дипломном проекте произведены ...

Скачать
460103
24
39

... ребрами) изображают конструктивные и потоковые функциональные структуры [14]. Принципы построения функциональных структур технических объектов рассматриваются в последующих главах курса "Основы проектирования им конструирования" не включенных в настоящее пособие. Для систем управления существуют характеристики, которые можно использовать в качестве критериев для оценки структур. Одна из них - ...

Скачать
49788
0
0

... зеленая улица для постройки Ту-160. Двумя Постановлениями Совета Министров СССР от 26 июня 1974 года и от 19 декабря 1975 года задается создание стратегического многоцелевого самолета Ту-160 в варианте ракетоносца-бомбардировщика с ДТРДФ НК-32. Практическая дальность полета с боевой нагрузкой 9000 кг (2 х X-45) на дозвуковом крейсерском режиме полета оговаривалась 14000-16000 км; дальность полета ...

Скачать
104551
7
1

... л.с. Использование двухтактного дизельного двигателя привело к конструктивным изменениям в трансмиссии и приводах управления движением. Имеются и другие конструктивные отличия, например, в установке зенитного пулемета. Основные характеристики остались без изменений. Т-80УД - это украинский вариант от ХКБМ. Технические характеристики Т-80 Длина, м 9,7 Высота, м 2,6 Ширина, м 2,2 ...

0 комментариев


Наверх