2.7 Кинематический расчет редуктора
Общее передаточное число редуктора определяется по формуле:
i = ωм / ωн
Где: ωм - угловая скорость вращения якоря электродвигателя;
ωн - угловая скорость вращения ротора насоса.
Заменяя угловую скорость частотой вращения, получим:
i = 2900/1000 = 2,9
Редуктор двухступенчатый с цилиндрическими косозубыми колесами.
Передаточное число первой ступени редуктора:
i = z/z
Где: Z2 = 20 - число зубьев ведомого колеса;
Z1 =12 - число зубьев ведущего колеса.
i1-2 =20/12=1,67
Передаточное число второй ступени редуктора:
i = i/ i
i = 2,9/,67=1,74
Выбирая количество зубьев ведущего колеса второй ступени редуктора =12, определяем количество зубьев ведомого колеса передачи:
Z3 = *i2-3
Z3 =12*l,74=21
Для снижения возможных ударных нагрузок передача крутящего момента от электродвигателя к редуктору и от редуктора к насосу осуществляется через муфту.
2.8 Расчет муфты
Основные данные:
§ номинальная передаваемая мощность N=40 кВт;
§ коэффициент режима работы, учитывающий условия эксплуатации, Кр=2,5;
§ диаметр посадочного участка вала d = 0,04 м.
Определяем диаметр, на котором находятся центры тяжести пружин:
Do = 4,5*d = 4,5*0,04 = 0,18 (м)
Пружины располагаются в два ряда, количество пружин т=16.
Сила, приходящаяся на каждую пружину, определяется по формуле:
F = T/0,5*Do*m
Где: Т - крутящий момент
Т = Рном / ω
Где: Рном = 40 кВт - номинальная мощность;
ω - угловая скорость;
ω = π.n / 30 = 3,14*2900/30 = 684,4 (с-1)
Тогда:
Тном = 40*103/415 = 96,4 (Н*м)
Тmах = Кр*Тном = 2,5*96,4 = 241 (Н*м) Fном = 96,4/0,5*0,18*16 = 66,94 (Н)
Fmax = 241/0,5*0,18*16 = 167,36 (Н) Материал для пружины - сталь 75 2 класса
[τ] = 0,4σ = 0,4*1400 = 560 (МПа)
2.9 Расчет пружины на прочность
Расчет пружины на прочность производится по формуле:
τ = K.8.F.Do/ 7.π.d3 [τ]
Где: τ - расчетное напряжение в поперечном сечении витков;
Do - средний диаметр пружины, Do = 0,012 м;
d - диаметр проволоки, d = 0,0025 м;
К - коэффициент, учитывающий влияние кривизны витков и поперечной силы;
К = (4С+2)/(4С-3)
Где: C = Do/d - индекс пружины
С = 0,012/0,0025 = 4,8
Тогда:
К = (4*4,8+2)/(4*4,8-3) = 1,2
Таким образом
τ = 1,2*8*167,36*0,012/3,14*0,00253 = 392,97 (МПа)
Условие τ < [τ] выполняется, поэтому пружина выбрана правильно.
При расчете пружины на жесткость определяется величина усадки λ, от воздействия силы F.
Для пружины круглого сечения
λ = 8.F.Do3Z/σ.d4
Где: Z - число витков пружины, Z = 6;
σ - модуль сдвига, σ = 8*104 МПа; F = 66,94.
Тогда:
λ = 8*66,94*0,01.23*6/8*104*0,00254 = 1,77*10 -4 (м)
Под действием силы
λ = 8*167,36*0,0123*6/8*104*0,00254 = 4,44*10 -4 (м)
График зависимости λ от F представляет собой прямую линию (рис. 2.1).
2.10 Гидравлический расчет установки
Явление кавитации заключается в образовании в жидкости местных областей, в которых происходит выделение (вскипание) парогазовых пузырьков с последующим их разрушением в результате конденсации паров и смыкания пузырьков, сопровождающимися высокочастотными гидравлическими микроударами и высокими забросами давления.
Кавитация может возникнуть в трубопроводах, в насосах, а также во всех устройствах, где поток жидкости подвергается поворотам, сужениям с последующим расширением (в кранах, клапанах, вентилях, диафрагмах) и прочим деформациям.
Кавитация нарушает нормальный режим работы гидросистемы, а в отдельных случаях оказывает разрушающее действие на ее агрегаты.
Особенно отрицательное действие оказывает кавитация на насосы. Она наступает, если давление на входе во всасывающую камеру насоса окажется недостаточным для того, чтобы обеспечить неразрывность потока жидкости в процессе изменения скорости ее движения, задаваемой изменением скорости движения всасывающего элемента насоса.
С появлением кавитации производительность насоса понижается, возникает характерный шум, происходит эмульсирование жидкости, а также наблюдаются резкие частотные колебания давления в нагнетаемой линии и ударные нагрузки на детали насоса, которые могут вызвать выход его из строя. Основным в борьбе с кавитацией применительно к насосам является создание на всасывании (на входе в насос) такого давления, которое было бы способно преодолеть без разрыва потока жидкости как гидравлические потери в линии всасывания, так и инерцию массы столба гидрожидкости.
В общем случае бескавитационную работу насоса можно описать следующим уравнением:
Рб + Рн = hγ - ΣPn - (И2Bxγ/2g) Рк (*)
Где: Рб=2,3 кг/см —225400 Па - давление в гидробаке самолета Ту-154;
Рн - повышение давления подкачивающим насосом;
h =2,5 м - разность между уровнем жидкости в баке и входным штуцером насоса;
γ = 834 кг/м3 = 8173,2 Н/м3 - удельный вес жидкости АМГ-10 при t=20°C;
ΣPn - сумма потерь давления во всасывающей магистрали;
Ивх = 3 м/с - скорость течения гидрожидкости во всасывающей магистрали. Выбрана согласно рекомендациям, приведенным в литературе;
g =9,8 м/с2 - ускорение свободного падения;
Рк - критическое давление, при котором поступает активное выделение воздуха из жидкости. Практически значение Рк может быть принято равным 400 мм рт.ст или Рк=53000 Па.
Потери давления во всасывающей магистрали складываются из потерь давления в:
§ шланге и трубопроводах;
§ закруглениях трубопроводов;
§ холодильнике;
§ самозапирающейся муфте;
§ расходомере-вискозиметре;
§ тройниках;
§ фильтрующем устройстве;
§ присоединительной арматуре.
Для расчета потерь в трубопроводах установки необходимо помимо длины знать их диаметр и характер течения жидкости. Расход жидкости через сечение трубопровода:
Q=(p d /4)* Ивх
Где: d - диаметр трубопровода
(**)
За расчетную величину расхода жидкости Q примем его максимальное значение Q=110 л/мин, или в системе СИ: Q=0,0018 м3/с
Для определения характера течения жидкости в трубопроводе воспользуемся критерием Рейнольдса. Число Рейнольдса
Re=И d/n
Где: v = 3,04°Е при температуре t=20°C - кипнематическая вязкость жидкости АМГ-10;
3,04 градуса Энглера соответствуют 21,2 сст или 0,212 см2/с.
Выражая входные величины формулы в сантиметрах и секундах, получим:
Re = 300*31,2/0,212 = 44151
Поскольку полученное число Re больше критического значения 2300, то можно заключить, что поток в трубопроводах и шлангах установки будет носить турбулентный характер.
Значение числа Re попадает в интервал от 2300 до 80000, следовательно потери на трение в трубопроводах зависят от числа Re.
По формуле Блазиуса коэффициент сопротивления при турбулентном течении:
λ = 0,3164*
λ = 0,3164*44151-0,25 = 0,0218
Потери давления на трение в шланге и трубопроводах определяются из выражения
DРтр= l g(L/d)*(И/2g)
Где: L - суммарная длина коммуникаций во всасывающей линии. Примем L=8,8 м (складывается из 5 м длины шланга, соединяющего самолет с установкой и 3,3 м трубопроводов внутри установки и самолета).
DР=0,0218*8173,2(8,8/0,0312)*(9*2*9,8) = 23076 (Па)
Потери на преодоление местных сопротивлений:
DР = x*(И g /2g)
Где: ξ - коэффициент местного сопротивления, зависящий от вида последнего. Значение ξ определяется из справочной литературы.
Потери на закруглениях трубопровода на 90° при относительном радиусе изгиба r/d=2, ξ =0,15, количество закруглений во всасывающей магистрали - 5 шт.
DР = 5-0,15*(3 *8173,2)/(2*9,8) = 2814,8 (Па)
Потери давления в холодильнике, ξ = 3,5:
DР = 3,5*(3 *8173,2)/(2*9,8) = 13135,5 (Па)
Потери давления в самозапирающейся муфте, ξ =1,2:
DР = 1,2*(3 *8173,2)/(2*9,8) = 4503,6 (Па)
Потери давления в расходомере-вискозиметре, ξ =0,4:
DР = 0,4*(3 *8173,2)/(2*9,8) = 1501,2 (Па)
Потери давления в тройниках (2 штуки), ξ =0,25:
DР = 0,5*(3 *8173,2)/(2*9,8) = 1876,5 (Па)
Максимальные потери давления в фильтрующем устройстве составляют 4 кг/см2 или 392000 Па - при указанном перепаде открывается клапан перепуска. Таким образом ΔРф = 392000 Па.
Потери давления в присоединительной арматуре, ξ = 0,1:
DР= 10*0,1*(3 *8173,2)/(2*9,8) = 3753 (Па)
Таким образом, суммарные потери давления во всасывающей магистрали составляются из:
åР =
И равны:
åРп = 2814,8+13135,5+23076+4503,6+1501,2+
+1876,5+392000+3753 = 44660,4 (Па)
Введем обозначение:
А = Р + hg - åP - (И2вхg /2g)
А = 225400+2,5*8173,2-442660,4-(32*8173,2)/(2*9,8) = 200584,4 (Па)
Из условия (*) определяем, требую степень повышения давления насосом подкачки:
Рн ³ Рк-А
Откуда
Рн ³ 2535844 Па
Произведенный выше расчет всасывающей линии насоса учитывал работу установки в основном режиме и в режиме проверки, т.е. когда гидрожидкость поступала к качающему узлу из гидробака самолета Ту-154, имеющего наддув сжатым воздухом. При работе установки в режиме заправки, забор жидкости осуществляется из бака стенда. Давление в нем равно атмосферному. Вследствие этого возникает необходимость расчета всасывающей линии при работе установки в режиме заправки. Условие бескавитационной работы нагнетающего насоса остается тем же, но величины, входящие в него изменяются.
Поскольку базовый аэродром может находиться на различной высоте над уровнем моря, то примем давление внутри бака Рб =70121 Па, что соответствует высоте 3000 м по таблице международной стандартной атмосферы.
Изменится также разность между уровнем жидкости в баке и входным штуцером насоса h. Она станет h' = 0,6 м.
Суммарная длина трубопроводов сократится и станет L'=l,9 м. Вследствие этого изменится и величина потерь на трение в коммуникациях, определяемая по формуле:
DР'=0,0218*8173,2*(1,9/0,0312)*(3/2*9,8)=4982 Па
Количество изгибов трубопровода сократится до 3-х, и величина потерь давления на них составит:
DР = 3*0,15*(3 *8173,2)/(2*9,8) = 1688,9 Па
К суммарным добавятся потери давления на гидравлическом кране
x=0,5
DР = 0,5*(32*8173,2)/(2*9,8) = 1876,5 Па
Потери давления на присоединительной арматуре ΔРпа останутся такими же.
Суммарные потери давления в линии всасывания при работе установки в режиме заправки:
åР' = DР'тр +D Р'изг+D Рх +D Ррв +D Рт +D Рф+D Рпа+D Ркр
И равны:
åР' = 4982+1688,9+13135,5+1501,2+1876,5+392000+3753+1876,5 = 420813,8 Па
Введем обозначение:
А'= Р'б + h'g - åP' - (И вхg /2g)
А' = 70121+0,6*8173,2-420813,8-(3 *8173,2)/(2*9,8) = -349541,9 (Па)
Pн³ 402541,9 (Па
Таким образом, потребное повышение давления подкачивающим насосом при работе установки в режиме заправки значительно превышает этот же показатель при работе в режиме очистки или проверки.
В качестве подкачивающего насоса можно использовать лопастной, приводимый от индивидуального электродвигателя. Режим работы электродвигателя предлагается, изменять вместе с режимом работы установки. Таким образом достигается экономия электроэнергии и отпадает необходимость в системе наддува гидробака установки, что существенно снижает ее стоимость и упрощает обслуживание.
Диаметр трубопровода линии нагнетания определяется из выражения (**). Изменяется значение скорости потока жидкости. Оно становится И =8 м/с.
Расчет производится по методике, изложенной в источнике [5].
... расчетов Р(t) строим графики изменения вероятности безопасности работы элементов гидросистемы за время типового полета t=3ч. (Рис.1.2) 1.3 Конструктивные усовершенствования шасси самолета Ту-154 При разработке конструктивных усовершенствований использовались: опыт эксплуатации шасси Ту-154, изучение технической литературы, информационный и патентный поиск. В дипломном проекте произведены ...
... ребрами) изображают конструктивные и потоковые функциональные структуры [14]. Принципы построения функциональных структур технических объектов рассматриваются в последующих главах курса "Основы проектирования им конструирования" не включенных в настоящее пособие. Для систем управления существуют характеристики, которые можно использовать в качестве критериев для оценки структур. Одна из них - ...
... зеленая улица для постройки Ту-160. Двумя Постановлениями Совета Министров СССР от 26 июня 1974 года и от 19 декабря 1975 года задается создание стратегического многоцелевого самолета Ту-160 в варианте ракетоносца-бомбардировщика с ДТРДФ НК-32. Практическая дальность полета с боевой нагрузкой 9000 кг (2 х X-45) на дозвуковом крейсерском режиме полета оговаривалась 14000-16000 км; дальность полета ...
... л.с. Использование двухтактного дизельного двигателя привело к конструктивным изменениям в трансмиссии и приводах управления движением. Имеются и другие конструктивные отличия, например, в установке зенитного пулемета. Основные характеристики остались без изменений. Т-80УД - это украинский вариант от ХКБМ. Технические характеристики Т-80 Длина, м 9,7 Высота, м 2,6 Ширина, м 2,2 ...
0 комментариев