2. Особенности получение материалов

2.1 Физико-химические принципы - основа систематического подхода к созданию суперионных материалов

Одной из важнейших задач ионики твердого тела является создание новых СИП и материалов со смешанным (ионно-электронным) характером проводимости. Потребность в них постоянно растет, и ее нельзя удовлетворить, ограничиваясь лишь полуэмпирическими подходами и классическими методами синтеза. Число различных материалов в ионике твердого тела столь многообразно, что решение этой сложной проблемы возможно лишь в том случае, если исследователи будут опираться на закономерности, вытекающие из общности физико-химической природы разнородных процессов и материалов.

Основные, наиболее важные фундаментальные физико-химические пршщшты, имеющие большое значение при создании суперионных материалов и играющие определяющую роль в целом для развития неорганического материаловедения, сформулированы в работах Ю.Д. Третьякова [29,30]:

1) периодичности свойств неорганических соединений элементов;

2) химического, термодинамического и структурного подобия;

3) непрерывности, соответствия и совместимости компонентов равновесной системы;

4) ограничения числа независимых параметров состояния в равновесной системе;

5) структурного разупорядочения и непостоянства состава, химического, структурного и фазового усложнения системы;

6) химической, гранулометрической и фазовой однородности;

7) неравноценности объемных и поверхностных свойств;

8) метастабильного многообразия физико-химических систем;

9) одинакового эффекта, производимого различными физико-химическими воздействиями.

Частично проиллюстрируем применимость выше перечисленных принципов на примере синтеза наиболее перспективных СИП.

Принцип периодичности хорошо прослеживается на примере керамических ТЭЛ с высокой катионной и анионной проводимостью. В первом случае СИП являются соединения металлов первой группы (Li, Na, К, Rb, Сs, Сu, Ag), а во втором — соединениями наиболее активных неметаллов (F, С1, Вr, I, О,S).

Принципы химического, термодинамического и структурного подобия также широко использовались при создании новых СИП. Так, например, по аналогии с хорошо известным серебропроводящим твердым электролитом RbAg4I5; была сделана попытка получить RbCu4I5 [31]. Но соединение RbCu4I5 не могло быть синтезировано из-за того, что ионный радиус Си+ меньше ионного радиуса Ag+. Для того чтобы получить соответствующую медьсодержащую комплексную соль, потребовалась замена иода на химически подобный хлор (с меньшим ионным радиусом в случае Сl-, чем у I-) В результате был синтезирован наиболее высокопроводящий СИП, имеющий ту же кристаллическую структуру, что и Rb4Cu16I7Cl13

Принцип химического усложнения (легирование или модифицирование исходной матрицы) наиболее часто используется при создании новых СИП с заданными электрофизическими свойствами. При образовании твердых растворов изовалентного или гетеровалентно-го замещения примесные компоненты изменяют концентрацию точечных дефектов и дефектов более сложной природы, влияя тем самым на стурно-чувствительные характеристики [34]. Так, например, электропроводность фторида бария BaF3 увеличивается в 109 раз при легировании его фторидом калия.

Принцип фазового усложнения является основой для создания нового класса композиционных СИП. В большинстве двухфазных композиционных твердоэлектролитных систем проводимость увеличивается в 104-1000 раз [35-40]. Для Lil- Аl203 было найдено, что σ увеличивается в 50 раз при добавлении в Lil оксида алюминия с размером частиц меньше 1 мкм [41], для системы Agl - А1203 наблюдался рост σ при комнатной температуре более чем в 2000 раз [42].

Принцип химической, гранулометрической и фазовой однородности чрезвычайно важен при синтезе СИП с воспроизводимыми физико-химическими свойствами, особенно тех, которые используются в микроминиатюрных твердотельных электрохимических устройствах. При этом необходимо помнить об имеющемся пределе миниатюризации твердофазных систем, поскольку при любой температуре, отличной от абсолютного нуля, химически сложная система неоднородна на микроуровне вне зависимости от того, является ли она равновесной или неравновесной (появление микрогетерогенности в нестехиометрнческих соединениях). Известно также, что в открытых неравновесных системах, постоянно обменивающихся веществом и энергией с окружающей средой, возможно спонтанное образование и развитие сложных упорядоченных структур в результате так называемой диссипативной самоорганизации [43, 44]. Для современного материаловедения представляет также большое значение консервативная самоорганизация, связанная с формированием упорядоченных структур в равновесных или близких к ним условиях супромолекулярные структуры или дендримеры [43].

Необходимые свойства твердофазных материалов могут быть получены в результате различных физических или химических воздействий на исходную матрицу. Хорошо известно, что высокая кислородионная проводимость может быть реализована в кубической модификации Zr02 [45]. Чистая двуокись циркония (Тпл = 2700С) имеет моноклинную структуру при комнатной температуре и тетрагональную при Т ~ 1500°С. Введение в Zr02 10+20% СаО приводит к образованию кубических флюоритоподобных твердых растворов Zr1-xCax-02-x, стабильных вплоть до температуры плавления. Стабилизированная кубическая двуокись циркония может быть получена также при введении в Zr02 других оксидов Y, Mg и некоторых оксидов редкоземельных элементов (РЗЭ). Нейтронное облучение также может привести к переходу тетрагональной модификации Zr02 в кубическую.

Необходимый эффект регулируемого изменения функциональных свойств ТЭЛ может быть получен в результате и других нетрадиционных физико-химических воздействий: взрывных волн, давления, лазерного облучения, вибрации, электрофореза, радиационного облучения.

Принцип неравноценности объемных и поверхностных свойств особенно широко используется при создании керамических наноструктурированных ТЭЛ, в которых очень важна межкристаллитная поверхность — ее протяженность и состав [46,47], а также в традиционных методах получения тонкопленочных материалов и методе химической сборки (атомная послойная эпитаксия) [48].

Один из фундаментальных принципов метастабильного многообразия физико-химических систем создается в современном дизайне перспективных СИП методами "soft chemistry" или "chimie douce" [49]. "Мягкая химия" определяется набором "умеренных" химических операций, позволяющих получить, в частности, новые метастабильные соединения, которые не могут быть реализованы из термодинамически стабильных полиморфных соединении путем структурных преобразований между "материнско-дочерними" фазами. В наборе приемов "мягкой химии" могут быть использованы такие процессы, как интеркаляция и деиитеркаляция, ионный обмен, дегидратация, дегидроксилирование, гидролиз, окисление и восстановление (включая электрохимическое), обработка газовыми смесями и т д.

Система перечисленных выше принципов в настоящее время далека от завершения, но ее использование, тем не менее, дает возможность создать общую методологическую основу контролируемого синтеза твердофазных веществ и материалов с уникальными электрофизическими характеристиками.

 


Информация о работе «Исследование твердых электролитов»
Раздел: Химия
Количество знаков с пробелами: 125739
Количество таблиц: 1
Количество изображений: 12

Похожие работы

Скачать
51477
0
0

... не менее пяти циклов разряд – заряд глубиной 250 Кл/см2. Основные результаты и выводы Настоящая работа обобщает результаты комплексного исследования механизма и кинетики электродных процессов в ионной и электронной подсистемах в низкотемпературных твердых электролитах с использованием импульсных методов. Важнейшим результатом работы является получение новых и уточнение полученных другими исс

Скачать
73378
4
1

... важно для выяснения механизмов электролиза, электрокатализа, электрокристаллизации, коррозии металлов и др., для совершенствования механизмов разделения веществ - экстракции и ионного обмена. Исследование свойств электролитов стимулируется энергетическими проблемами (создание новых топливных элементов, солнечных батарей, электрохимических преобразователей информации), а также проблемами защиты ...

Скачать
24738
0
5

... постановка задачи, сформулированы ее цели, описывается научная и практическая значимость работы. В первой главе приводится анализ литературных данных по проблеме ионной и электронной эмиссии из твердых катионпроводящих электролитов и инжекции ионов в электродные материалы. Рассматриваются проблемы ионного транспорта в твердых электролитах и смешанных ионно-электронных проводниках. Во второй ...

Скачать
44671
0
0

... от теоретических ·  объяснить отклонения полученных результатов от теоретических ·  сделать вывод о применимости данного метода определения германия в соединениях для вычисления его массовой доли в твердом электролите GeSe-GeJ2 и об отклонении состава твердого электролита от теоретического. Литературный обзор При подготовке к проведению экспериментальной части курсовой работы был проведен ...

0 комментариев


Наверх